English French German Spain Italian Dutch Russian Portuguese Japanese Korean Arabic Chinese Simplified

lunes, abril 30, 2012

Los algoritmos que controlan nuestro mundo

Si estaba esperando que alguien le avisara cuando las computadoras se volvieran más inteligentes que nosotros, ponga cuidado.

No va a existir ninguna suave voz, como la de HAL 9000 (el ordenador de la nave espacial de la película "2001: Odisea del Espacio"), que nos informe que nuestros servicios humanos ya no son necesarios.

En realidad, nuestros amos electrónicos ya están tomando el control; y lo están haciendo de un modo mucho más sutil que el que sugiere la ciencia ficción.


Su arma: el algoritmo.
Detrás de todo ingenioso servicio web hay un aun más ingenioso código web: desde mayoristas en línea (que calculan qué libros y películas podríamos estar interesados en comprar) hasta el buscador de amigos Facebook y su servicio para etiquetar imágenes, pasando por los motores de búsqueda que guían nuestros pasos en la web.
Son estos procesos computacionales invisibles los que cada vez controlan el modo en que interactuamos con nuestro mundo electrónico.

En la conferencia TEDGlobal del último mes, el experto en algoritmos Kevin Slavin dio una de las charlas más impactantes del evento, en la que advirtió que "las matemáticas que las computadoras usan para decidir cosas" se estaba infiltrando en todos los aspectos de nuestras vidas.
Entre otros ejemplos mencionó los de un robot limpiador que mapea el recorrido óptimo para asear una casa y de los algoritmos financieros utilizados en los intercambios bursátiles en línea, que cada vez más se hacen con el control de Wall Street.
"Estamos escribiendo estas cosas que ya no somos capaces de leer", dijo Slavin.
"Lo hemos vuelto ilegible. Y hemos perdido la noción de qué es exactamente lo que sucede en este mundo que hemos creado".

El libro de los millones

Los algoritmos pueden ser más ingeniosos que los humanos, pero no necesariamente comparten nuestro sentido de la perspectiva: una falla que se hizo evidente cuando el código que asigna precios en Amazon fue a la guerra consigo mismo a comienzos de este año.



"The Making of a Fly" ("La Creación de una Mosca"), un libro sobre la biología molecular de una mosca, desde que es larva hasta que se convierte en un insecto completo, puede ser una lectura interesante, pero ciertamente no merece un precio de US$23,6 millones.

Esa es la cifra que alcanzó por unos instantes, debido a que los algoritmos que Amazon utiliza para fijar y actualizar los precios comenzaron a competir entre sí.
Es una pequeña muestra del caos que puede causar el hecho de que un programa se vuelva lo suficientemente inteligente como para operar sin supervisión humana, cree Slavin.
"Son algoritmos en conflictos, sin un adulto que los supervise", dijo.
A medida que el código se vuelve más sofisticado sus tentáculos van alcanzando todos los aspectos de nuestras vidas, hasta nuestras elecciones culturales.

Los algoritmos del sitio de alquiler de películas Netflix ya son responsables del 60% de las películas que son pedidas por sus clientes, a medida que nos volvemos menos dependientes de nuestras propias capacidades críticas y del boca a boca y más de lo que Slavin llama la "física de la cultura".

¿Cuánto vale esa película?

La empresa británica Epagogoxi está llevando este concepto hacia su lógica conclusión: utiliza algoritmos para determinar si una película será exitosa.
Toma una serie de variables (el guión, la trama, las estrellas que actúan en ella, la ubicación) y las cruza con datos sobre las ventas de otras películas similares para determinar cuánto dinero generará.
El sistema, de acuerdo con el director ejecutivo de la empresa Nick Meany, ha "ayudado a los estudios a decidir si hacer o no una película". En el caso de un proyecto, al que se le había asignado un presupuesto de casi US$300 millones, el algoritmo estimó que sólo recaudaría unos US$50 millones, por lo que sencillamente no valía la pena iniciar la producción.

Para otra película, determinó que la cara estrella que el estudio había preseleccionado para el rol protagónico no redituaría más que si convocaban a una figura menos conocida.
Este enfoque más bien clínico ha fastidiado a quienes creen que se opone a su idea de que sus películas favoritas han sido hechas de una forma más creativa, orgánica.

Meaney se apura en mencionar que los algoritmos no tienen un rol tan protagónico en Hollywood.
"Las películas se hacen por muchos motivos y se nos asigna más influencia de la que en realidad tenemos cuando se dice que nosotros decidimos qué filmes se producen".

"No les decimos cómo tiene que ser la trama. El estudio utiliza nuestros datos como una valiosa información de negocios. Ayudamos a la gente a tomar decisiones difíciles, ¿y por qué no?", dijo.
A pesar de esto, el estudio con que Epagogix ha trabajado por los últimos cinco años pidió no ser mencionado. Meaney dice que es un asunto "delicado".

Una memoria en la red

Si los algoritmos tuvieran un salón de la fama, la principal estrella sería Google.
Su famoso código secreto ha lanzado al gigante de los buscadores a su actual posición como una de las compañías más poderosas del mundo.

Nadie duda de que su sistema ha hecho el acto de buscar algo mucho más fácil, pero sus críticos se preguntan desde hace tiempo a qué costo.


Algoritmo
"Conjunto ordenado y finito de operaciones que permite hallar la solución de un problema"
Diccionario de la Real Academia Española
En su libro "The Filter Bubble" ("La Burbuja del Filtro") Eli Pariser se pregunta en qué medida el algoritmo de Google recolecta nuestros datos personales y da forma, consecuentemente, a la web que vemos.
Por su parte, psicólogos de la Universidad de Columbia, Estados Unidos, presentaron recientemente un estudio que muestra que el uso cada vez más frecuente de motores de búsqueda está cambiando el modo en que los humanos pensamos.
"Desde que aparecieron los buscadores estamos reorganizando la forma en que recordamos las cosas. Nuestros cerebros se apoyan en internet como una fuente de memoria, del mismo modo en que nos apoyamos en la memoria de nuestros amigos, familiares o colegas", dijo la autora del trabajo, Betsy Sparrow. Ella dice que cada vez más recordamos dónde puede encontrarse cierta información en vez de la información misma.

Desplome repentino

En los mercados financieros, los programas informáticos se están volviendo los actores protagónicos, con sus algoritmos que procesan datos para decidir qué comprar y qué vender.
Hasta el 70% de los intercambios de Wall Street son ejecutados por las llamadas black box (cajas negras) o algo-trading (intercambios basados en algoritmos).
Esto implica que junto a los sabios muchachos de la bolsa, los bancos y empresas bursátiles emplean a miles de sabios físicos y matemáticos.
Pero hasta la precisión de las máquinas, alimentada por los humanos magos del código, es incapaz de garantizar que las cosas funcionen sin sobresaltos.

Atónitos ante sus colegas cibernéticos.
En el llamado Flash Crash (Desplome Repentino) del 6 de mayo de 2010, una caída de cinco minutos en los mercados generó un momento de caos generalizado.

Un operador deshonesto fue acusado de una caída del 10% en el índice Dow Jones, pero en realidad el culpable fue un programa informático que el operador estaba utilizando.
En tan solo 20 minutos el algoritmo vendió 75.000 acciones por un valor de US$4.300 millones, haciendo que otros algoritmos lo siguieran.

Al igual que un miembro biónico puede extender la fuerza y resistencia humanas, el mercado electrónico exhibió su capacidad de exagerar y acelerar pequeñas variaciones.
Nadie ha sido capaz de determinar exactamente qué sucedió, y el mercado se recuperó minutos más tarde.
El caos obligó a los reguladores a introducir interruptores para detener la actividad bursátil en caso de que las máquinas comiencen a portarse mal.

Los algoritmos de Wall Street pueden ser el equivalente cibernético de los yuppies de los '80, pero a diferencia de los humanos no exigen gemelos de plata, cigarros y champagne. Lo que quieren son conexiones veloces.
Spread Networks ha estado construyendo una de esas conexiones de fibra óptica, capaz de reducir en 3 microsegundos el intercambio de información entre las bolsas de Chicago y Nueva York, distantes 1.327km.
Por su parte, un cable de fibra óptica transatlántico, que va desde Nueva Escocia, en Canadá, hasta Somerset en el Reino Unido, está siendo desplegado para que puedan operar los algoritmos bursátiles y será capaz de enviar acciones de Londres a Nueva York en 60 milisegundos.

"Estamos recorriendo Estados Unidos con dinamita y sierras para cortar roca, así un algoritmo puede cerrar un trato tres microsegundos más rápido, todo para un sistema de comunicación que ningún humano jamás tocará", dijo Slavin.
A medida que los algoritmos extienden su influencia más allá de las máquinas y se vuelven capaces de transformar su entorno, puede que se vuelva hora de determinar exactamente cuánto saben y si todavía estamos a tiempo de domesticarlos.

Jane Wakefield
BBC
Martes, 23 de agosto de 2011
Tomado de http://www.bbc.co.uk/mundo/

sábado, abril 28, 2012

La fórmula matemática acusada de destruir la economía mundial

No todos los días ocurre que alguien formula una ecuación que puede transformar el mundo. Pero a veces sí ocurre, y el mundo no siempre cambia para bien. Algunos creen que la fórmula Black-Scholes y sus derivadas ayudó a generar el caos en el mundo financiero.
La fórmula se escribió por primera vez en los primeros años de la década de 1970, pero su historia comienza muchos años antes, en el mercado de arroz de Dojima en el siglo XVII en Japón, donde se escribían contratos de futuros para los comerciantes del arroz. Un contrato de futuros simple dice que una persona acordará comprar arroz de otra persona en un año, a un precio que acuerdan al momento de la firma.



En el siglo XX, la Bolsa de Comercio de Chicago era el lugar para que los comerciantes negociaran no sólo futuros sino contratos de opciones. Un ejemplo de esto último es un contrato en el que se acuerda comprar arroz en cualquier momento durante un año, a un precio convenido con la firma, pero que es opcional.
Es posible imaginarse por qué uno de estos contratos puede ser útil. Si alguien tiene una cadena grande de restaurantes de hamburguesas, pero no sabe cuánta carne necesitará comprar el próximo año -y está nervioso de que el precio pueda subir- entonces lo único que tiene que hacer es comprar unas opciones en carne.
Pero eso genera un problema: ¿Cuánto debería estar pagando por esas opciones? ¿Cuánto valen? Es precisamente acá donde puede ayudar la fórmula revolucionaria Black-Scholes.

El precio de una hamburguesa
"El problema que trata de solucionar es definir el valor del derecho, pero no de la obligación, para comprar un activo particular a un precio específico, dentro de un periodo determinado o al final de él", dice Myron Scholes, profesor de finanzas de la Facultad de Negocios de la Universidad de Stanford, en Estados Unidos, y -por supuesto- coinventor de la fórmula Black-Scholes.

La llegada de los sistemas cuantitativos transformó a Wall Street.
Una parte del rompecabezas era la pregunta del riesgo: el valor de una opción para comprar carne a un precio, digamos, de US$2 por un kilo depende del precio de la carne y cómo ese precio se está moviendo.
Pero la conexión entre el precio de la carne y el valor de la opción de la carne no varía de una manera sencilla. Depende de qué tan probable sea la utilización de la acción. Eso, a su vez, depende del precio de la opción y del precio de la carne. Todas las variables parecen estar enredadas de manera impenetrable.
Scholes trabajó en el problema con su colega, Fischer Black, y descubrió que si alguien tiene el portafolio de carne correcto, además de las opciones para comprar y vender carne, esa persona tiene un portafolio excelente y totalmente sin riesgos. Como ya conoce el precio de la carne y el precio de los activos libres de riesgo, si mira la diferencia entre ellos puede calcular el precio de esas opciones de carne. Esa es la idea básica. Los detalles son excesivamente complicados.

En la tienda de dulces
El método Black-Scholes resultó ser una forma no sólo para calcular el valor de las opciones pero también todo tipo de activos financieros.
"Éramos como niños en un almacén de dulces, en el sentido que describíamos opciones en todos lados, las opciones estaban presentes en todo lo que hacíamos en la vida", dice Scholes.
Pero Black y Scholes no eran los únicos niños en la tienda de dulces, dice Ian Stewart, cuyo libro argumenta que la Black-Scholes fue una invención peligrosa.
"Lo que hizo la ecuación fue darles a todos la confianza para comerciar con opciones y, de manera muy rápida, con unas opciones financieras mucho más complicadas, que se conocen como derivadas financieras", dice.
Pero a medida que los bancos y fondos de cobertura se basaron cada vez más en sus ecuaciones, se hicieron más y más vulnerables a los errores o simplificaciones en las matemáticas.
"La ecuación se basa en la idea de que los grandes movimientos son en realidad muy, muy raros. El problema es que los mercados reales tienen estos grandes cambios mucho más a menudo de lo que este modelo predice", dice Stewart. "Y el otro problema es que todo el mundo está siguiendo los mismos principios matemáticos, por lo que todos vamos a obtener la misma respuesta."

La llegada de los genios
El trabajo de Scholes había inspirado a una generación de genios matemáticos de Wall Street, y en la década de 1990, él ya era un jugador en el mundo de las finanzas, como socio de un fondo de cobertura llamado Long-Term Capital Management.
"La idea de esta empresa era que iba a basar sus transacciones en principios matemáticos, tales como la ecuación de Black-Scholes. Y realmente fue un éxito sorprendente, al comienzo", dice Stewart. "Fue superando a las compañías tradicionales muy notablemente y todo se veía bien."
Pero no terminó bien. Long-Term Capital Management se encontró con, entre otras cosas, la crisis financiera rusa. La empresa perdió US$ 4 mil millones en el curso de seis semanas. Fue rescatada por un consorcio de bancos que habían sido reunidos por la Reserva Federal. Y - en el momento – se convirtió en una noticia muy, muy grande. Todo esto sucedía en agosto y septiembre de 1998, menos de un año después de Scholes había sido galardonado con el premio Nobel.

Lecciones
Stewart dice que las lecciones del caso Long-Term Capital Management son evidentes. "Se demostró la peligrosidad de este tipo de transacciones basadas en algoritmos si no se vigilaban algunos de los indicadores de que las personas más convencionales utilizaban", dice. "Ellos [Long-Term Capital Management] se comprometieron a seguir adelante con el sistema que tenían. Y salió mal."
Scholes dice que eso no es lo que sucedió en absoluto. "No tuvo nada que ver con las ecuaciones y nada que ver con los modelos", dice. "Yo no estaba manejando la empresa, permítanme ser muy claro al respecto. No existía la capacidad para soportar el choque que se produjo en el mercado en el verano y otoño de finales de 1998. Así que fue sólo una cuestión de la asunción de riesgos. No fue una cuestión de modelos".
Esto es algo que la gente se sigue discutiendo una década después. ¿Fue el colapso de Long-Term Capital Management el fracaso de los métodos matemáticos para las finanzas o, como dice Scholes, fue simplemente un caso de operadores financieros que tomaron demasiado riesgo contra el mejor juicio de los expertos matemáticos?
Diez años después de Long-Term Capital Management, Lehman Brothers se derrumbó. Y el debate sobre Black-Scholes es ahora un debate más amplio sobre el papel de las ecuaciones matemáticas en las finanzas.


¿La culpa fue de las matemáticas?
Ian Stewart afirma que la ecuación Black-Scholes cambió el mundo. ¿Pero realmente cree que las matemáticas causaron la crisis financiera?
"Fue el abuso de su ecuación lo que causó el problema, y yo no creo que se puede culpar a los inventores de una ecuación, si alguien viene y lo utiliza mal", dice.
Black-Scholes cambió la cultura de Wall Street, que pasó de ser un lugar donde las personas comerciaban con base en el sentido común, experiencia e intuición, a un lugar donde la computadora decía sí o no.
Pero en realidad, ¿es justo culpar a Black-Scholes por lo que siguió?
"La tecnología Black-Scholes tiene reglas y requisitos muy específicos”, dice Scholes.
"Esta tecnología atrajo o hizo que los bancos de inversión contrataran a personas que tenían habilidades cuantitativas o matemáticas. Eso lo acepto. A continuación, desarrollaron productos y tecnologías propias."
No todas las tecnologías posteriores, dice Scholes, eran lo suficientemente buenas. "[Algunas] tenía supuestos equivocados, o utilizaban datos de forma incorrecta para calibrar sus modelos, o las personas que utilizaban los modelos no sabían cómo hacerlo".
Scholes argumenta que no hay vuelta atrás. "La cuestión fundamental es que las tecnologías cuantitativas en las finanzas sobrevivirán y crecerán, y seguirán evolucionando con el tiempo", dice.