English French German Spain Italian Dutch Russian Portuguese Japanese Korean Arabic Chinese Simplified
Mostrando entradas con la etiqueta Matemáticas Discretas. Mostrar todas las entradas
Mostrando entradas con la etiqueta Matemáticas Discretas. Mostrar todas las entradas

miércoles, enero 08, 2014

La Bundesliga es la más competitiva, según un estudio matemático

Un nuevo método desarrollado por investigadores de tres universidades españolas mide la competitividad de las ligas de Inglaterra, España, Italia y Alemania. El análisis es útil tanto para la prensa especializada, público y los técnicos de los equipos, como para los organismos que se encargan de hacer clasificaciones internacionales.


La Bundesliga es la más competitiva entre cuatro de las principales ligas futbolísticas europeas: la inglesa, la española, la italiana y la alemana. A esta conclusión ha llegado un equipo de investigadores de la Universitat Politècnica de València, la Universidad Rey Juan Carlos de Madrid y la Universidad Politécnica de Madrid, tras desarrollar un método científico que facilita y fortalece los procedimientos para medir la competitividad.
El estudio, elaborado conjuntamente por grupos de investigación matemática de las tres universidades, ha sido publicado por la revista Chaos, una publicación internacional de referencia en su campo.
El método para medir la competitividad, en este caso aplicada a las ligas de fútbol, analiza cómo los equipos cruzan sus posiciones en la clasificación a lo largo de la temporada. Para su desarrollo, los investigadores se centraron en las dos últimas campañas de las cuatro principales ligas de fútbol europeas.
El método analiza cómo los equipos cruzan sus posiciones en la clasificación a lo largo de la temporada
“Podría decirse que nuestro método mide los vuelcos que ocurren en la clasificación. Las medidas que aportamos no se obtienen solo con la clasificación final de la liga, sino que tiene en cuenta la evolución; es como un electrocardiograma de la competición”, señala Francisco Pedroche, investigador del Institut de Matemàtica Multidisciplinària de la Universitat Politècnica de València.
Los autores de la investigación consideran que el método que han concebido  ofrece más información que otros basados en el porcentaje de victorias de cada equipo. El análisis de la competitividad, y en particular el concepto de equilibrio competitivo  de una liga, es muy usado en la teoría económica de las ligas de fútbol americano.
La novedad aportada en este sentido por los científicos de la URJC, la UPM y la UPV es que hasta ahora no existe ningún método aplicado a una serie de más de dos jornadas. El nuevo método permite, además, medir lo competitivo que ha sido cada equipo a lo largo de la temporada y también comparar la evolución de conjuntos en diferentes ligas.  
Útil para las clasificaciones
De este modo, el análisis que ofrece puede ser útil tanto para la prensa especializada, público en general y los técnicos de los equipos, como para los organismos que se encargan de hacer clasificaciones internacionales de equipos.
“Por ejemplo, la competitividad de la liga puede contribuir a la ponderación de los campeonatos que se utilizan para asignar el trofeo “Bota de oro” o para el coeficiente que se emplea para la clasificación de equipos en la Liga de Campeones. Además, el método podría usarse también para estudiar la posibilidad de dividir una liga en dos subligas con competidores más homogéneos”, apunta Pedroche.
El estudio ha contado con financiación del MICINN,  fondos FEDER y de la Junta de Andalucía. El equipo investigador ha estado formado por los profesores Regino Criado, Esther García y Miguel Romance de la Universidad Rey Juan Carlos y del Centro de Tecnología Biomédica de la Universidad Politécnica de Madrid, y Francisco Pedroche, investigador del Institut de Matemàtica Multidisciplinària de la Universitat Politècnica de València. 

Tomado de Sinc La Ciencia es Noticia

martes, abril 09, 2013

Un algoritmo matemático localiza los nodos más influyentes de una red

Un equipo de científicos de la Universidad de Leipzig (Alemania), la Universidad de Barcelona y el Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC, centro mixto CSIC- Universidad de las Islas Baleares) ha desarrollado una metodología que permite clasificar los elementos de una red en función de su importancia para el funcionamiento del sistema. El artículo se publica en  la revista Scientitic Reports.

Red de conexiones aéreas entre aeropuertos en España (rojo : alta probabilidad, y azul, probabilidad baja).El estudio muestra que combinando los datos correspondientes a la estructura y dinámica de la red, un logaritmo matemático puede señalar sus nodos más “influyentes”, es decir, aquellos cuya actividad determina el éxito del sistema. La idea es similar a la que rige los buscadores de internet, que analizan y seleccionan las entradas más relevantes de cada tema.

“En este caso hemos aplicado un algoritmo matemático a las dinámicas y mecanismos habituales de una red”, explica el investigador del IFISC Víctor Eguíluz. “Y el resultado es una clasificación ordenada de los puntos de conexión con mayor peso”. Muchos procesos se propagan a través de estas redes de interacción complejas, como las enfermedades o la información.

“La ventaja de conocer los puntos más importantes del recorrido es el ahorro de esfuerzos tanto para potenciar como para bloquear el proceso –comenta el investigador. Por ejemplo, si conoces la red a través de la cual se transmite una enfermedad y tienes un número limitado de vacunas, puedes saber dónde tienes que aplicarlas para conseguir que la enfermedad se extienda lo menos posible”.


Red de conexiones aéreas entre aeropuertos en España (el rojo señala alta probabilidad, y el azul, probabilidad baja). (Imagen: J. Fernandez-Gracia, P. Fleurquin, M.A. Tugore)

Los resultados del trabajo sirven para cuantificar en qué medida puede controlarse la eficiencia de un sistema manipulando sólo un nodo. Un caso paradigmático de este aspecto es el tráfico aéreo. Cuando un aeropuerto sufre retrasos en sus vuelos, en función de su relevancia dentro del sistema, los demás aeropuertos lo notarán más o menos.

Por el momento, las conclusiones de este estudio son solo teóricas. Los investigadores se han basado en las dinámicas de sistemas complejos descritos en otras publicaciones anteriores. Aún así, el sistema permite analizar las probabilidades de dispersión de, por ejemplo, una enfermedad o una moda, desde un punto hacia el resto de la red. (Fuente: SINC/CSIC)

domingo, octubre 14, 2012

Premio Abel 2012 para el matemático Endre Szemerédi, por sus aportes a la computación


El Premio Abel de este año 2012,ha recaído en Endre Szemerédi(Budapest, 1940), del Instituto de Matemáticas Aplicadas Rényi Alfré (Hungría), según ha anunciado la Academia Noruega de las Ciencias y las Letras. El galardón reconoce las contribuciones a la informática y teorías de números de este pionero en las ciencias de la computación.

Szemerédi es investigador del Instituto de Matemáticas Aplicadas Rényi Alfré (Academia Húngara de Ciencias, Budapest) y catedrático del departamento de Ciencias de la Computación de Rutgers en la Universidad Estatal de Nueva Jersey (EEUU).

El galardón, considerado el nobel de las matemáticas y dotado con casi 800.000 euros, reconoce “sus contribuciones fundamentales a las matemáticas discretas (estudian estructuras que forman la base de la informática teórica y de la teoría de la información) y el profundo y duradero impacto de sus aportaciones sobre la teoría aditiva de números y la teoría ergódica (con medida 0 o 1)”.

El matemático húngaro fue uno de los primeros en darse cuenta de la importancia de la teoría en las ciencias de la computación. También ha hecho aportaciones relevantes a otras áreas de la matemática, con la publicación de más de 200 trabajos científicos.

El premio Abel, instituido en 2003, reconoce contribuciones “de extraordinaria profundidad e influencia en las ciencias matemáticas”. Endre Szemerédi recogerá el galardón en una ceremonia presidida por el Rey Harald el próximo 22 de mayo.

Matemáticas discretas e imaginación extraordinaria

La carrera de Endre Szemerédi como matemático empezó tarde. Cursó un año en la Facultad de Medicina y trabajó en una fábrica, antes de pasar finalmente a las matemáticas. Estudió en la Universidad Eötvös Loránd de Budapest, donde obtuvo el grado Master of Science (M.Sc.) en 1965. Después, se incorporó a la Universidad Estatal de Moscú, donde realizó el doctorado en 1970 bajo la dirección de Israel M. Gelfand.

Su excepcional talento matemático fue descubierto por su mentor, Paul Erdös, cuando era joven estudiante en Budapest. Szemerédi estuvo a la altura de las expectativas de su maestro, y demostró varios teoremas fundamentales de gran importancia. Muchos de sus resultados han generado investigación para la posteridad y puesto los cimientos de nuevas orientaciones en matemáticas.

En 2010, con motivo de su 70 cumpleaños, el Instituto de Matemáticas Aplicadas Rényi Alfréd y la Sociedad Matemática János Bolyai organizaron en Budapest un congreso para celebrar su éxito. Según el libro An Irregular Mind, publicado antes del congreso, “Szemerédi tiene un ‘intelecto fuera de lo común’, su cerebro está configurado de forma diferente al de la mayoría de los matemáticos. Somos muchos quienes admiramos su manera única de pensar, su extraordinaria imaginación”.

El investigador ha revolucionado las matemáticas discretas mediante la introducción de técnicas originales e ingeniosas y la resolución de numerosos problemas fundamentales. Esta parte de las matemáticas estudia estructuras como los grafos, las sucesiones, las permutaciones y las configuraciones geométricas. Las redes de comunicación, como internet, pueden ser descritas y analizadas gracias a las herramientas de la teoría de grafos, mientras que el diseño de algoritmos informáticos se basa esencialmente en el conocimiento de las matemáticas discretas.

Los trabajos de Szemerédi han llevado la combinatoria al centro de la escena de las matemáticas, revelando sus estrechos vínculos con campos como la teoría aditiva de números, la teoría ergódica, la informática teórica y la geometría de incidencia.

En 1975, Endre Szemerédi atrajo por vez primera la atención de muchos matemáticos gracias a su solución de la famosa conjetura de Erdős-Turán, demostrando que en todo conjunto de enteros con densidad positiva existen progresiones aritméticas arbitrariamente largas. Esto era sorprendente ya que, aun en el supuesto de progresiones de longitudes 3 o 4, los esfuerzos exigidos anteriormente, tanto de Klaus Roth como del propio Szemerédi, habían sido enormes.

La prueba de Szemerédi era una obra maestra de razonamiento combinatorio, y se reconoció inmediatamente su excepcional profundidad e importancia. Un paso clave en la prueba, actualmente conocida como el Lema de Regularidad de Szemerédi, es una clasificación estructural de los grafos grandes. Con el tiempo, este lema se ha convertido en una herramienta esencial tanto para la teoría de grafos como para la informática teórica, permitiendo resolver problemas mayores de ensayo de propiedades, y dando nacimiento a la teoría de los grafos límite.

Aparte de su impacto en las matemáticas discretas y la teoría aditiva de números, el teorema de Szemerédi inspiró a Hillel Furstenberg a desarrollar la teoría ergódica en nuevas direcciones. Furstenberg concibió una nueva demostración del teorema de Szemerédi, al establecer el teorema de recurrencia múltiple en la teoría ergódica, con lo que, inesperadamente, se vinculaban cuestiones de matemáticas discretas a la teoría de sistemas dinámicos. Esta conexión fundamental condujo a numerosos desarrollos adicionales, tales como el teorema de Green-Tao, que afirma la existencia de progresiones aritméticas arbitrariamente largas de números primos.

Szemerédi ha hecho muchas más aportaciones perspicaces, esenciales e influyentes, tanto en materia de matemáticas discretas como en informática teórica. Entre los ejemplos de matemáticas discretas se incluyen el teorema de Szemerédi-Trotter, el método semialeatorio de Ajtai-Komlós-Szemerédi, el teorema del producto-suma de Erdős-Szemerédi y el lema de Balog-Szemerédi-Gowers. Entre los ejemplos de informática teórica se incluyen la red de ordenación de Ajtai-Komlós-Szemerédi, el esquema de hashing de Fredman-Komlós-Szemerédi, y el teorema de Paul-Pippenger-Szemerédi-Trotter, que separa el tiempo lineal determinista del no-determinista.

Tomado de http://www.agenciasinc.es/Noticias/Premio-Abel-2012-para-el-matematico-Endre-Szemeredi-teorico-de-la-computacion

miércoles, marzo 02, 2011

Las simetrías del universo

Las matemáticas nos ayudan a descubrir la lógica que subyace 
al mundo tan complejo y caótico en el que vivimos. Marcus du Sautoy 
  • Los números y sus leyes conviven con todos nosotros: el año actual, 2011, es un número primo, solo divisible por 1 y por sí mismo; y es más: 2011 puede obtenerse sumando 11 números primos consecutivos...
  •  Hay números recurrentes en la naturaleza, que se esconden detrás de bellas formas simétricas, reveladoras de fuerza y eficacia a la hora de sobrevivir.
  • Con el matemático, escritor y presentador inglés Marcus du Sautoy, Redes se acerca a los misterios de los números para descubrir su belleza y su magia.

Eduard Punset:
He leído tu maravilloso libro sobre simetría, Marcus, y me encantaría que los teleespectadores sintieran lo mismo que sentí yo durante las primeras páginas, en las que evocabas o recordabas tu infancia, cuando alguien, creo que fue un profesor, te contó algo sobre las matemáticas… te dijo que necesitabas saber de qué tratan en realidad las matemáticas ¿no? Gracias a él descubriste un libro con algunos números que luego resultó que eran los de la sucesión de Fibonacci, ¿verdad?
Marcus du Sautoy:
Exacto, sí.
Eduard Punset:
¿Por qué no nos recuerdas lo que pasó y, de paso, tal vez logremos saber en qué consisten realmente las matemáticas?
Marcus du Sautoy:
De acuerdo. Creo que mi profesor intentó revelarme exactamente eso: de qué tratan en realidad las matemáticas. De hecho, de niño yo no quería ser matemático…


Eduard Punset:
¡Querías ser espía!
Marcus du Sautoy:
Quería ser espía, sí, sonaba tan glamuroso… y empecé a aprender muchos idiomas, porque me percaté de que necesitaría comunicarme con los espías rusos… pero los idiomas me parecieron muy frustrantes, llenos como estaban de verbos irregulares y con una ortografía que parecía no tener sentido… yo buscaba algún tipo de lógica y estructura.
También me gustan las actividades creativas: me encanta la música, hago mucho teatro… de hecho, el espacio donde estamos ahora es el mismo en el que estamos preparando una obra de teatro matemática.
Eduard Punset:
¿Aquí mismo?
Marcus du Sautoy:
Sí; por eso te he traído a este lugar de la Oxford University.
Eduard Punset:
Déjame advertir a los telespectadores de que, de vez en cuando, puede pasar un tren, un ferrocarril…
Marcus du Sautoy:
Sí, que no se preocupen cuando suceda, no es que vibre su salón, es solamente un tren, estamos justo debajo de una estación ferroviaria. 
El caso es que me encantan las actividades creativas, y parecía encaminado a ellas, pero entonces, a los doce o trece años, tuve un profesor que me dijo, en plena lección: «Du Sautoy, ¡quiero hablar contigo cuando termine la clase!». Pensé que me había metido en un lío, pero el profesor me llevó aparte y me dijo: «creo que deberías saber de qué tratan en realidad las matemáticas, porque no se limitan a lo que hacemos en clase, no se reducen a las divisiones largas y a los porcentajes, son mucho más apasionantes». Y me recomendó algunos libros, entre los cuales había uno llamado, sorprendentemente, El lenguaje de las matemáticas, que me abrió los ojos a estas historias.
De repente leí sobre la sucesión de Fibonacci y las fantásticas historias que se escondían tras esos números…
Eduard Punset:
¿Nos puedes recordar en qué consiste la sucesión de Fibonacci?
Marcus du Sautoy:
Es una secuencia de números. Empieza así: 1, 1, 2, 3, 5, 8…
Cada número se obtiene sumando los dos anteriores. Descubrí que los números de esta sucesión están entre los favoritos de la naturaleza, porque los hallamos por doquier en el mundo natural…
Eduard Punset:
En las flores…
Marcus du Sautoy:
En el número de pétalos de una flor, por ejemplo… Lo que hizo mi profesor por mí, mediante los libros que me recomendó, es abrirme los ojos a un mundo mágico.
Eduard Punset:
Otra cosa maravillosa que has hecho es escribir este libro sobre la simetría, en el que descubres algo que la mayoría de la gente no sabe, y es que la simetría está en el corazón de la naturaleza, puesto que es la manera que tienen los animales y las plantas de comunicarse.
Marcus du Sautoy:
¡Ah, creo que ahí radica lo fascinante! La simetría, en cierto modo, es el lenguaje de la naturaleza. Ahí estaba yo, intentando aprender idiomas para llegar a ser un espía, cuando descubrí en ese libro que las matemáticas (en concreto, la simetría) también constituyen un lenguaje asombroso. El abejorro del jardín, por ejemplo, tiene una visión muy mala, pero puede distinguir las formas simétricas y sabe que es más probable que tengan alimento. La flor, a su vez, quiere atraer a las abejas para la ayuden a propagar el polen, así que, cuanto más simétrica sea la flor, más posibilidades tendrá de que las abejas la vean y la visiten. ¡Incluso los seres humanos la utilizan! Por lo general, si le muestras a alguien dos rostros, uno artificialmente más simétrico que el otro, y le preguntas cuál es más hermoso, todo el mundo suele decantarse por…
Eduard Punset:
…el rostro más simétrico…
Marcus du Sautoy:
¡El más simétrico! ¿Y por qué ocurre? ¡Pues porque es difícil lograr la simetría! La simetría es muy frágil… Tener un rostro muy simétrico significa contar con un buen ADN y con un buen proceso de desarrollo, lo cual comunica información de que somos una buena pareja. Por eso nos atrae la simetría, porque la simetría transmite información sobre lo buenos que somos como parejas.
Eduard Punset:
¿Pero cómo es posible encontrar simetría también en las rocas o las piedras?
Marcus du Sautoy:
Es cierto: ¡el mundo inanimado también está repleto de simetría! Otra cosa que hay que tener clara sobre la simetría es que, para la naturaleza, resulta increíblemente eficaz. Por ejemplo, si soplo para formar una pompa de jabón, ésta tenderá a adquirir una forma esférica que, en cierto sentido, es la más simétrica, porque se trata de un estado de bajo consumo energético. La simetría es muy eficaz para compactar objetos y darles fuerza. Por ejemplo, el motivo por el que los diamantes son tan resistentes es que el carbono está dispuesto en forma de tetraedro. ¡Y esa simetría es increíblemente resistente!
Otro lugar interesante en el que hallamos simetría es en los virus.
Eduard Punset:
¿En los virus?
Marcus du Sautoy:
¡Sí! ¿por qué son simétricos los virus? Pues porque se aprovechan de que, gracias a la simetría, hay una regla fácil para su replicación, y no algo complicado que se aplica de un modo distinto cada vez. Es la misma norma en todos lados. El virus quiere realizar muchas copias de sí mismo, y la simetría es una manera muy eficaz de lograrlo. En resumidas cuentas, ¡la simetría está por todas partes en la naturaleza!
Eduard Punset:
¡Es maravilloso! Una cosa, he leído también sobre los diagramas, has reflexionado mucho al respecto. ¿Por qué son tan asombrosos los diagramas?
Marcus du Sautoy:
Acabamos de terminar una serie para la BBC llamada La belleza de los diagramas, en la que intentamos explicar el poder de los diagramas para condensar una idea científica. Por ejemplo, en la televisión de Inglaterra hemos emitido un programa que se centraba en el diagrama de Copérnico sobre el sistema solar heliocéntrico. Era un diagrama bellísimo (Copérnico fue el primero que situó el sol en el centro del sistema solar…) Hace más de 500 años. Y fue una idea increíblemente revolucionaria, porque transformó nuestro lugar en el universo, ¡pero lo hizo mediante un diagrama sencillísimo!
Eduard Punset:
Ese gráfico logró trasladar la idea, probablemente por primera vez en la historia, de que los seres humanos no eran el centro del universo.
Marcus du Sautoy:
Sí, y el libro que escribió Copérnico tenía más de 400 páginas y estaba lleno de palabras, cifras y ecuaciones…. Sin embargo, ¡ese diagrama tan sencillo del principio lo resume todo! No hay que seguir leyendo, con verlo basta para saber que el sol está en el centro del sistema solar.
Nos considerábamos el centro de todo, ¡y hubo que desechar esa concepción! Ni siquiera estamos en el centro de la Vía Láctea, el sol está situado en un borde de esta galaxia espiral. Pero creo que resume el poder de las matemáticas, puesto que… [Ruido] ¡Ahí llega un tren!
Eduard Punset:
¡Ahí va nuestro tren! Dejemos que pase. ¡Es fantástico!
Marcus du Sautoy:
Sí, crea ambiente y todo...
Eduard Punset:
¿Hay mucha gente en el tren?
Marcus du Sautoy:
Sí, es un tren de pasajeros con destino a Londres.
Marcus du Sautoy:
Como decía, creo que la belleza de un diagrama radica en que plasma una idea, y las matemáticas funcionan muy bien para eso mismo: para descubrir la lógica y los patrones que subyacen al mundo tan complejo y caótico en el que vivimos.
Creo que tanto las imágenes como las matemáticas trascienden las culturas. Tal vez los teleespectadores de tu programa tengan problemas para entenderme en inglés, y habrá que traducir lo que digo al español, pero las ideas matemáticas sobre la simetría, sobre la sucesión de Fibonacci o sobre los números primos (otra de mis obsesiones) van más allá de las culturas y creo que incluso trascienden el espacio intergaláctico, ¿sabes? Si estuvieran entrevistándome desde la otra punta del universo, nuestra biología podría ser distinta, y nuestra química, e incluso la física… ¡pero creo que las matemáticas serían exactamente las mismas!
Eduard Punset:
¡Es increíble! Has mencionado los números primos. Tenía mis dudas y no sabía si preguntarte sobre ellos, porque yo mismo nunca he entendido bien lo que eran…
Marcus du Sautoy:
¡No eres el único! Los matemáticos tampoco acabamos de entenderlos, ¡son un gran misterio!
Eduard Punset:
¿Habría alguna posibilidad de explicárselos un poco a nuestros teleespectadores?
Marcus du Sautoy:
¡Claro! Mi primer libro (que se tradujo al español) se centraba en el misterio de los números primos. ¿Y qué es un número primo? Pues un número indivisible, como el 7 o el 17. Estos números empiezan así: 2, 3, 5, 7… el 9 no, porque el 9 es 3 multiplicado por 3… así que pasamos al 11, 13… el 15 no, porque es 3 multiplicado por 5… luego tenemos el 17, 19, etcétera. Estos números son los más importantes de las matemáticas, porque todos los números se forman multiplicando los primos entre sí. Así pues, un número como 105 sería 3 multiplicado por 5 multiplicado por 7. En mi opinión, los números primos son como los átomos, como el hidrógeno y el oxígeno…
Eduard Punset:
Los ladrillos del universo…
Marcus du Sautoy:
¡Son los ladrillos que construyen las matemáticas y el universo! Las matemáticas, para mí, consisten en la búsqueda de patrones. Esto es lo que intento hacer, me gusta decir que soy un "cazador de patrones".
Y el gran misterio es el siguiente: ¿hay algún patrón en estos números? Conforme contamos cifras cada vez más altas, ¡se parecen más a números de la lotería que a números con algún patrón! Ahí está el gran reto: ¿podemos encontrar algún patrón en la manera en la que están dispuestos estos números en el universo numérico? Por ahora sigue siendo un gran misterio… de hecho, hay un premio de un millón de dólares para la persona que pueda dilucidar el misterio de estos números tan enigmáticos.
Eduard Punset:
Ni siquiera sabemos cuándo acaban…
Marcus du Sautoy:
Bueno, los griegos demostraron hace 2000 años que nunca se acaban. ¡El más grande que conocemos hasta la fecha tiene casi 13 millones de dígitos! No pienso escribirlo, tardaría un par de meses en hacerlo… Pero sabemos que hay números primos tan grandes como queramos. El misterio radica en si hay una fórmula para descubrirlos.


Eduard Punset:
Pero has sugerido en algún lugar que existe una relación clara con la física…
Marcus du Sautoy:
¡Es muy intrigante!
Eduard Punset:
¡Sí! ¿Cómo es posible?
Marcus du Sautoy:
Nos hemos percatado de que hay ciertos patrones en los niveles energéticos de los átomos grandes, como los del uranio, que comparten propiedades muy parecidas con ciertos patrones de los números primos. Y se trata de un patrón tan marcado que no puede ser una mera coincidencia, creemos que tiene que haber una conexión, y que las matemáticas de la física cuántica pueden ayudarnos a desentrañar el secreto de los números primos. Es como si un arqueólogo descubriera los mismos jeroglíficos egipcios en Sudamérica y en Egipto, y se dijera: "no puede ser una coincidencia, ¡tiene que haber una conexión entre ambas culturas!". Eso mismo pensamos ahora con los números primos, que tiene que haber una conexión entre los primos y este aspecto de la física cuántica.
Eduard Punset:
Y si encontráis la conexión, ¿qué significará eso?
Marcus du Sautoy:
¡Podría tener consecuencias devastadoras para Internet!
Eduard Punset:
¿Para Internet?
Marcus du Sautoy:
Sí, porque los números primos pueden sonar como un concepto matemático críptico y esotérico, pero constituyen la base de la criptografía de Internet. Cada vez que mandas por Internet información sobre tu tarjeta de crédito de un modo seguro… ¡No quieres que nadie pueda acceder a los datos de tu tarjeta de crédito! Y utilizamos algunas propiedades especiales de los números primos para encriptar la información de la tarjeta de crédito y hacerla ilegible.
Para deshacer ese cálculo, hay que entender algo sobre los números primos que ahora mismo desconocemos. Pero sería posible que alguien que entendiera bien cómo funcionan los primos pudiera descifrar los códigos.
Eduard Punset:
Pudiera deshacer los códigos.
Marcus du Sautoy:
Sí. Así que los números primos son, en realidad, algo que interesa a los espías ahora mismo, ¿sabes? Quizá he trazado un círculo perfecto y estudiar los primos me ayude a materializar mi sueño de ser un espía.
Eduard Punset:
Marcus, hay algo increíble… Cuando supimos, hace algunos años, que se había creado una cátedra para Richard Dawkins llamada "cátedra para la comprensión pública de la ciencia" todo el mundo pensó, y nosotros también, que era maravilloso, porque era una manera de recalcar la necesidad de que la ciencia irrumpa en la cultura popular mediante la difusión científica, ¿no? Ahora su sucesor es Marcus Du Sautoy. Me parece maravilloso saber que ahora ocupas la cátedra para la comprensión pública de la ciencia. En Redes llevamos unos 15 años trabajando con ese objetivo. Nos planteamos qué podemos hacer para que la gente sea consciente de que el dogmatismo se está acabando y de que, de repente, la ciencia puede ayudar a configurar un mundo nuevo, mucho más altruista… ¿Cuál es tu opinión sobre la comprensión pública de la ciencia?
Marcus du Sautoy:
Creo que tienes toda la razón. A mediados de la década de 1990, fue la primera cátedra de este tipo. Vivimos en la era de la ciencia, y los asuntos científicos repercuten en nuestra vida cotidiana, ya hablemos del cambio climático, la medicina o los recursos energéticos.
Es un cargo fundamental y considero, en cierto modo, que es como ser embajador del mundo de la ciencia porque, para mucha gente, la ciencia es como un país extranjero: no entienden el idioma, no entienden la cultura, y necesitamos embajadores para explicar lo que hacemos, cómo influimos en la sociedad, ¡pero también al revés! No se trata, como decías, de explicarle la ciencia a la gente de manera dogmática y esperar que la entienda, sino que hay que entablar un diálogo para saber cuáles son las preocupaciones del público y qué es lo que no queda claro; eso es lo que tenemos que abordar.
Por tanto, creo que es un proceso que va en las dos direcciones, y las redes sociales nos pueden ayudar mucho. Ahora hay una enorme comunidad científica en Twitter que interactúa de un modo muy activo con la sociedad, y me parece un avance muy positivo.
Eduard Punset:
Te mereces la cátedra, no solamente por tus conocimientos matemáticos, sino porque sabes entretener al público. Tras años de docencia, he aprendido algo en la universidad: si no entretienes a los alumnos, ¡no vas a poder enseñarles nada!
Marcus du Sautoy:
Creo que lo que dices es crucial porque, por ejemplo, muchas personas escogen un libro sobre simetría porque buscan entretenimiento. No necesitan sentir que les están enseñando cosas…. Sin embargo, ¡por el camino podemos despertarles el interés por las ideas intelectuales! Pero tienes toda la razón del mundo: se trata de alcanzar un equilibro y de entretener… al fin y al cabo, ¿por qué decidí dedicarme a la ciencia? Porque me encanta lo que hago, me gusta leer sobre temas científicos, adoro descubrir cosas nuevas, ¡disfruto con mi trabajo! E intento trasladarle al público esa pasión y diversión, intento decirles: «¡mirad qué historias más fantásticas podemos contaros!» 
Eduard Punset:
¿Qué me dirías si te dijera que no se me dan bien las matemáticas?
Marcus du Sautoy:
¡Ajá! Me lo dicen tantas veces… ¡Mi respuesta es que todo el mundo tiene capacidad para las matemáticas! Eso no significa que todos tengan que dominar el cálculo mental, pero la aritmética, como me dijo mi profesor, no es de lo que tratan las matemáticas. Las matemáticas tienen que ver con la búsqueda de patrones, con la búsqueda de estructura y lógica en el mundo que nos rodea. Creo que nuestro cerebro ha evolucionado para las matemáticas, porque sin matemáticas no sobrevives en el mundo. Si no sabes geometría, no puedes juzgar las distancias, no puedes capturar a tu presa y se te va a escapar. Si no sabes contar, no sabrás si tus adversarios te superan en número y si tienes que luchar o huir. Los que saben matemáticas son los que han sobrevivido, y por eso todos tenemos cerebros matemáticos, en mi opinión.
Marcus du Sautoy, matemático de la Universidad de Oxford, Reino Unido.
 
tomado de: http://www.rtve.es/television/20110206/redes-simetrias-del-universo/402059.shtml

miércoles, noviembre 17, 2010

Grafos Hamiltonianos y bacterias

Utilizan una computadora bacteriana para saber si un grafo es o no hamiltoniano. Esto sería una demostración para un nuevo tipo de computación.

Grafo hamiltoniano con uno de los posibles ciclos hamiltonianos marcado. Quizás algunos de los temas más interesantes en la ciencia son los asuntos interdisciplinares, cuestiones que unen más de una rama del saber. Si a usted, amigo lector, se le dice que las Matemáticas pueden aplicarse a la Biología o a la Genética seguro que no se sorprenderá demasiado, al fin y al cabo las Matemáticas son el lenguaje de la ciencia. Pero, ¿y si es al revés?, ¿y si es la Genética la que ayuda a resolver problemas matemáticos?

Todo aquel que realmente esté interesado en la Informática (es decir, más allá de jugar con el ordenador y bajarse material de la red) sabe de la importancia de la Matemática Discreta. Esta rama de las Matemáticas permite estudiar la naturaleza de los números y, por tanto, desarrollar sistemas de cifrado, como el RSA que le permite conectarse de manera segura con su banco. Nos dice también la manera de encontrar una solución óptima a un problema, como la ruta más corta entre dos puntos. Los lógicos que han trabajado en problemas computacionales nos dicen que hay problemas muy duros de computar, de tipo NP o NP completos, que básicamente no pueden ser resueltos de manera óptima en un tiempo razonable. La única manera que tenemos (o la única posible que existe) para resolverlos de manera segura es enumerar todas las configuraciones posibles y escoger la mejor. Es decir, aplicando fuerza bruta. Pero los ordenadores tienen sus limitaciones a la hora de resolver los problemas a base de fuerza bruta si el sistema a resolver es lo suficientemente grande, pues el tiempo de resolución crece exponencialmente, aunque sea un hipotético ordenador cuántico.

Es aquí donde la Biología puede ayudar. Podemos tener un cultivo de miles de millones de bacterias que genéticamente computen lo que nosotros queramos. O, al menos, esa es la idea. Recientemente unos investigadores norteamericanos han creado una “computadora bacteriana” capaz de resolver un problema matemático sofisticado (aunque pequeño), demostrando así que es posible realizar computación en células vivas y abriendo la puerta a diversas aplicaciones. Esta segunda generación de computadoras bacterianas ilustra además la capacidad de este método para resolver de manera real problemas matemáticos complicados. El equipo de investigadores, pertenecientes a diversas instituciones científicas, usaron ingeniería genética para modificar bacterias E. coli que fueron capaces de resolver el problema conocido como problema del ciclo hamiltoniano. Este resultado es una extensión de sus trabajos previos con este tipo de computación, y con el que anteriormente resolvieron el “problema de la tortitas quemadas”, resultado que ya cubrimos en NeoFronteras. El problema del ciclo hamiltoniano pregunta sobre si en un grafo, formado por diversos vértices unidos por aristas, hay una ruta que empezando por un vértice se vuelva al mismo pasando una sola vez por cada uno de los otros vértices, aunque se queden aristas sin visitar. Es decir, si así es el grafo será hamiltoniano y si no es así no será hamiltoniano. Aunque hay algún criterio (como el de Dirac) que permite decir en algunos casos si un grafo es hamiltoniano, no hay, en general, un criterio universal que nos lo asegure, a diferencia del caso de decir si un grafo es o no Euleriano (si tiene o no un camino que partiendo de un vértice visite todas las aristas una sola vez). La ausencia de tal criterio frustra a muchos estudiantes de informática que estudian Matemática Discreta como parte de su formación, pues, pese al parecido, los conceptos de grafo euleriano y hamiltoniano son muy distintos. La mayoría de las veces la única manera de decir si un grafo es hamiltoniano es encontrar un ciclo* hamiltoniano en él. Estos investigadores modificaron el circuito genético de las bacterias E. coli para que fuesen capaces de encontrar un ciclo hamiltoniano en grafos de tres vértices (por pequeño un problema ridículamente simple por otra parte).

Las bacterias que resolvieron satisfactoriamente el problema informaban por fluorescencia roja y verde simultánea, produciéndose colonias amarillas. Aunque el problema es en este caso simple, lo importante de este resultado es que nos dice que es posible resolver este tipo de problemas. Su extensión a grafos mayores sería factible. La Biología Sintética es el uso de las técnicas de Biología Molecular, Ingeniería Genética y modelización matemática para diseñar y construir circuitos genéticos que permitan a las células vivas realizar nuevas funciones. Según uno de los autores este resultado es un ejemplo más de lo poderosa y dinámica puede ser la Biología Sintética. En este caso se ha usado para resolver un problema matemático, pero se puede aplicar a Medicina o a investigación sobre fuentes de energía, Medio Ambiente, etc.

Fuentes y referencias: Nota de prensa. Jordan Baumgardner, Karen Acker, Oyinade Adefuye, Samuel THOMAS Crowley, Will DeLoache, James O Dickson, Lane Heard, Andrew T Martens, Nickolaus Morton, Michelle Ritter, Amber Shoecraft, Jessica Treece, Matthew Unzicker, Amanda Valencia, Mike Waters, A. M. Campbell, Laurie J. Heyer, Jeffrey L. Poet and Todd T. Eckdahl. Solving a Hamiltonian Path Problem with a bacterial computer. Journal of Biological Engineering.

martes, noviembre 16, 2010

El turno es ahora para para las abejas

Lunes, 15 de noviembre de 2010
Redacción BBC Mundo


El avispón sería el primer animal encontrado que funciona con energía solar. La naturaleza llegó allí antes: científicos israelíes acaban de descubrir que los avispones tienen células solares en su piel y utilizan la energía del Sol para funcionar.
El hombre lleva más de un siglo tratando de construir células que aprovechen la energía solar de forma eficiente sin mucho éxito. Pero ahora, se acaba de descubrir que los avispones llevan haciendo esto de forma natural desde hace más de 50.000 años.

                                                                                                                                                                                     Avispón (Vespa orientalis)

Científicos de la Universidad de Tel Aviv, en Israel, descubrieron que los llamados avispones orientales (Vespa orientalis), que habitan en el sudeste europeo, el noreste africano y el suroeste asiático, tienen células solares construidas de forma natural bajo su piel. Esto explicaría por qué este tipo de insectos, de la familia de los himenópteros (hormigas, abejas, abejorros y avispas), están mucho más activos a la hora del mediodía, al contrario que otras avispas que tienden a demostrar una actividad más frenética a primera hora de la mañana.

Exoesqueleto
Los avispones utilizarían como paneles solares dos partes -una de color amarillo y otra de color marrón- que se encuentran en su exoesqueleto o cutícula, una especie de caparazón similar al esqueleto humano que protege a los animales externamente. Las radiaciones del sol son absorbidas por la cutícula del avispón, a través del pigmento. Posteriormente la energía absorbida por este pigmento se transforma en energía. Jacob Ishay, Universidad de Tel Aviv Tradicionalmente se había pensado que estos pigmentos servían como señal de peligro y para hacer saber a otros animales que contenían elementos venenosos con los que podían atacarles.
Ahora los científicos han descubierto que, además, sirven para capturar la energía solar. "Las radiaciones del Sol son absorbidas por la cutícula del avispón, a través del pigmento. Posteriormente la energía absorbida por este pigmento es transformada a través de las células o fotones que la convierten en electricidad", le explicó a la BBC Jacob Ishay, uno de los investigadores principales del estudio. Los científicos creen que la energía solar forma parte del metabolismo de los animales, puesto que estudios anteriores descubrieron que se produce dentro de esta área.

Excavadores solares Avispón 

  (Vespa orientalis)
 El avispón utiliza los pigmentos marrones y amarillos de su cuerpo para absorber las radiaciones solares. Los avispones orientales viven en colonias construidas bajo tierra. Utilizan la mayor parte de su energía para excavar, tomando tierra con su boca y sacándola repetidamente, para crear así los enjambres que luego llenarán con células hexagonales de forma muy similar a como hacen las abejas. Los investigadores observaron que los avispones trabajaban en verano mucho más duro que en invierno y que la actividad era especialmente alta al mediodía. El número de avispones que salían de la entrada de la colonia era dos veces mayor que durante la mañana o la noche, al contrario de los movimientos habituales de otro tipo de avispas. Y encontraron que había una correlación, cuanto más sol, más actividad mostraba el avispón, y si la actividad solar descendía lo mismo ocurría con la actividad de los insectos. Según explica Ishay, aunque se sabe que las plantas utilizan la energía solar, este es el primer caso descubierto de una criatura que utiliza el sol como forma directa de energía. 99% absorción

Los paneles solares del avispón consitirían en muchas capas, hasta 30 en el caso de la parte marrón que contiene melanina (un pigmento encontrado también en el cuerpo humano) y 15 en la sección amarilla, que contiene xantopterina. Ambas son responsables de capturar un 99% de las radiaciones ultravioleta que le llegan. Al contrario que otras especies de avispas, los avispones registran más actividad al mediodía. "Encontramos que el exoesqueleto contiene propiedades muy interesantes, como que no refleja sino que absorbe la radiación y podría ser que el animal utilice la energía para controlar su temperatura corporal. Imágenes infrarrojas de previos estudios mostraron que su cuerpo está más frío que el entorno".

Los avispones soportan temperaturas de hasta 40 grados y podrían convertir el calor en electricidad para rebajar su temperatura y utilizar esa misma electricidad para convertirla en calor cuando hace más frío. En cualquier caso las aplicaciones del estudio de estos fascinantes animales podrían ayudarnos a "aprender a construir células solares más efectivas", según asegura Ishay. Lo mejor en estos casos es copiar lo que la naturaleza ya ha inventado.

lunes, noviembre 15, 2010

Un complejo problema matemático, resuelto por las abejas


«El problema del viajante», que un ordenador puede tardar varios días en resolver, resulta sencillo para estos insectos
Científicos británicos han descubierto que las abejas son capaces de realizar la ruta más corta posible entre las flores incluso si, en un experimento, éstas son cambiadas de orden. Parece algo simple pero, en realidad, su comportamiento demuestra una mente matemática de primer orden. Al elegir la ruta más corta y eficaz, son capaces de resolver un complejo y famoso problema matemático conocido como «El problema del viajante de comercio». 
El problema del viajante consiste en encontrar el recorrido más corto para un vendedor que tiene que visitar varias ciudades y volver al punto de partida. Se lo plantean, por ejemplo, las compañías de teléfonos para elegir la ruta que deben seguir los recolectores de dinero de las cabinas públicas instaladas en una ciudad o, claro esta, los comerciales que deben hacer una ruta en poco tiempo.