English French German Spain Italian Dutch Russian Portuguese Japanese Korean Arabic Chinese Simplified
Mostrando entradas con la etiqueta Premio Abel. Mostrar todas las entradas
Mostrando entradas con la etiqueta Premio Abel. Mostrar todas las entradas

sábado, abril 20, 2013

Premio Abel 2013 para Pierre Deligne, hacedor de puentes entre islas matemáticas

La Academia Noruega de Ciencias y Letras ha concedido el premio Abel al matemático belga Pierre Deligne, reconocido por sus colegas como un innovador arquitecto de puentes entre las distintas áreas de las matemáticas, puentes que revelan nexos profundos entre islas del conocimiento previamente percibidas como compartimentos estancos. Deligne trabaja actualmente en el Instituto de Estudios Avanzados de Princeton.

El galardón, a menudo referido como el Nobel de las matemáticas, reconoce las “contribuciones seminales” de Deligne a la geometría algebraica, que a su vez tuvieron un “impacto transformador en la teoría de números” y otros campos relacionados. “Sus poderosos conceptos, ideas, resultados y métodos”, sigue reconociendo la Academia, “siguen influyendo en el desarrollo de la geometría algebraica, y de las matemáticas en su conjunto”. La dotación del premio es de unos 800.000 euros, y el matemático belga lo recibirá el 21 de mayo del rey Harald de Noruega.

“Deligne inició su carrera en Bélgica”, comenta el director del ICMAT en Madrid, Manuel de León, “pero como les suele pasar a los medallistas Fields europeos, acabó en Princeton; los americanos se los llevan”. El premio Abel reconoce las contribuciones “de extraordinaria profundidad e influencia” a las ciencias matemáticas, y se concede desde 2003. La medalla Fields, que también se considera a veces el Nobel de las matemáticas, intenta más bien inyectar estímulo a los matemáticos jóvenes, explica De León.

El matemático José Ignacio Burgos, también investigador del ICMAT y muy familiarizado con las aportaciones de Deligne, explica que el premiado no sólo tendió nexos creativos para derribar algunas de las “fronteras internas” de las matemáticas (como la que separa la geometría del álgebra), sino también otras fronteras externas, con implicaciones en la física teórica.

“La geometría algebraica tuvo en principio unos objetivos simples”, dice Burgos. “Se trataba de saber qué figuras geométricas pueden ser soluciones de las ecuaciones polinomiales; pero esta materia ha alcanzado con el tiempo un grado de sofisticación soberbio, y subyace a la teoría de cuerdas de la física teórica”.La teoría de cuerdas es uno de los modelos con que los físicos intentan unificar la mecánica cuántica, que reina en los dominios de lo muy pequeño, con la relatividad general, que predomina a las escalas planetarias y cósmicas.

“Pierre Deligne es indisputablemente uno de los más grandes matemáticos del mundo”, sostiene sir Williams Timothy Gowers –conocido para la ciencia como W. T. Gowers—, profesor del departamento de matemática pura de la Universidad de Cambridge y medallista Fields. “Aunque uno nunca sabe quién puede ganar el premio Abel de un año dado, era virtualmente inevitable que Deligne se lo iba a llevar a su debido tiempo, así que el anuncio de hoy tiene tan poco de sorpresa como lo pueda tener un anuncio de este tipo”. Como verán, la prosa de W. T. Gowers tiene la precisión cortante de una ecuación polinómica.

Tomado de El País

domingo, octubre 14, 2012

Premio Abel 2012 para el matemático Endre Szemerédi, por sus aportes a la computación


El Premio Abel de este año 2012,ha recaído en Endre Szemerédi(Budapest, 1940), del Instituto de Matemáticas Aplicadas Rényi Alfré (Hungría), según ha anunciado la Academia Noruega de las Ciencias y las Letras. El galardón reconoce las contribuciones a la informática y teorías de números de este pionero en las ciencias de la computación.

Szemerédi es investigador del Instituto de Matemáticas Aplicadas Rényi Alfré (Academia Húngara de Ciencias, Budapest) y catedrático del departamento de Ciencias de la Computación de Rutgers en la Universidad Estatal de Nueva Jersey (EEUU).

El galardón, considerado el nobel de las matemáticas y dotado con casi 800.000 euros, reconoce “sus contribuciones fundamentales a las matemáticas discretas (estudian estructuras que forman la base de la informática teórica y de la teoría de la información) y el profundo y duradero impacto de sus aportaciones sobre la teoría aditiva de números y la teoría ergódica (con medida 0 o 1)”.

El matemático húngaro fue uno de los primeros en darse cuenta de la importancia de la teoría en las ciencias de la computación. También ha hecho aportaciones relevantes a otras áreas de la matemática, con la publicación de más de 200 trabajos científicos.

El premio Abel, instituido en 2003, reconoce contribuciones “de extraordinaria profundidad e influencia en las ciencias matemáticas”. Endre Szemerédi recogerá el galardón en una ceremonia presidida por el Rey Harald el próximo 22 de mayo.

Matemáticas discretas e imaginación extraordinaria

La carrera de Endre Szemerédi como matemático empezó tarde. Cursó un año en la Facultad de Medicina y trabajó en una fábrica, antes de pasar finalmente a las matemáticas. Estudió en la Universidad Eötvös Loránd de Budapest, donde obtuvo el grado Master of Science (M.Sc.) en 1965. Después, se incorporó a la Universidad Estatal de Moscú, donde realizó el doctorado en 1970 bajo la dirección de Israel M. Gelfand.

Su excepcional talento matemático fue descubierto por su mentor, Paul Erdös, cuando era joven estudiante en Budapest. Szemerédi estuvo a la altura de las expectativas de su maestro, y demostró varios teoremas fundamentales de gran importancia. Muchos de sus resultados han generado investigación para la posteridad y puesto los cimientos de nuevas orientaciones en matemáticas.

En 2010, con motivo de su 70 cumpleaños, el Instituto de Matemáticas Aplicadas Rényi Alfréd y la Sociedad Matemática János Bolyai organizaron en Budapest un congreso para celebrar su éxito. Según el libro An Irregular Mind, publicado antes del congreso, “Szemerédi tiene un ‘intelecto fuera de lo común’, su cerebro está configurado de forma diferente al de la mayoría de los matemáticos. Somos muchos quienes admiramos su manera única de pensar, su extraordinaria imaginación”.

El investigador ha revolucionado las matemáticas discretas mediante la introducción de técnicas originales e ingeniosas y la resolución de numerosos problemas fundamentales. Esta parte de las matemáticas estudia estructuras como los grafos, las sucesiones, las permutaciones y las configuraciones geométricas. Las redes de comunicación, como internet, pueden ser descritas y analizadas gracias a las herramientas de la teoría de grafos, mientras que el diseño de algoritmos informáticos se basa esencialmente en el conocimiento de las matemáticas discretas.

Los trabajos de Szemerédi han llevado la combinatoria al centro de la escena de las matemáticas, revelando sus estrechos vínculos con campos como la teoría aditiva de números, la teoría ergódica, la informática teórica y la geometría de incidencia.

En 1975, Endre Szemerédi atrajo por vez primera la atención de muchos matemáticos gracias a su solución de la famosa conjetura de Erdős-Turán, demostrando que en todo conjunto de enteros con densidad positiva existen progresiones aritméticas arbitrariamente largas. Esto era sorprendente ya que, aun en el supuesto de progresiones de longitudes 3 o 4, los esfuerzos exigidos anteriormente, tanto de Klaus Roth como del propio Szemerédi, habían sido enormes.

La prueba de Szemerédi era una obra maestra de razonamiento combinatorio, y se reconoció inmediatamente su excepcional profundidad e importancia. Un paso clave en la prueba, actualmente conocida como el Lema de Regularidad de Szemerédi, es una clasificación estructural de los grafos grandes. Con el tiempo, este lema se ha convertido en una herramienta esencial tanto para la teoría de grafos como para la informática teórica, permitiendo resolver problemas mayores de ensayo de propiedades, y dando nacimiento a la teoría de los grafos límite.

Aparte de su impacto en las matemáticas discretas y la teoría aditiva de números, el teorema de Szemerédi inspiró a Hillel Furstenberg a desarrollar la teoría ergódica en nuevas direcciones. Furstenberg concibió una nueva demostración del teorema de Szemerédi, al establecer el teorema de recurrencia múltiple en la teoría ergódica, con lo que, inesperadamente, se vinculaban cuestiones de matemáticas discretas a la teoría de sistemas dinámicos. Esta conexión fundamental condujo a numerosos desarrollos adicionales, tales como el teorema de Green-Tao, que afirma la existencia de progresiones aritméticas arbitrariamente largas de números primos.

Szemerédi ha hecho muchas más aportaciones perspicaces, esenciales e influyentes, tanto en materia de matemáticas discretas como en informática teórica. Entre los ejemplos de matemáticas discretas se incluyen el teorema de Szemerédi-Trotter, el método semialeatorio de Ajtai-Komlós-Szemerédi, el teorema del producto-suma de Erdős-Szemerédi y el lema de Balog-Szemerédi-Gowers. Entre los ejemplos de informática teórica se incluyen la red de ordenación de Ajtai-Komlós-Szemerédi, el esquema de hashing de Fredman-Komlós-Szemerédi, y el teorema de Paul-Pippenger-Szemerédi-Trotter, que separa el tiempo lineal determinista del no-determinista.

Tomado de http://www.agenciasinc.es/Noticias/Premio-Abel-2012-para-el-matematico-Endre-Szemeredi-teorico-de-la-computacion