English French German Spain Italian Dutch Russian Portuguese Japanese Korean Arabic Chinese Simplified
  • Sidamat

    Software interactivo para el aprendizaje de las matemáticas

  • Edublog

    Acá encontrarás noticias e información relacionada con las matemáticas y el mundo real.

  • MathClubVirtual

    Red de docentes y estudiantes apasionados por las matemáticas

  • Docente de secundaria

    En Institución Educativa Exalumnas de la Presentación Ibagué Col

  • Matemàticas y Tic

    Uso de Excel para el aprendizaje de la estadística

De las naranjas a los módems


En 1998, de repente, las matemáticas fueron noticia en todos los medios. Thomas Hales actualmente Andrew Mellon (Universidad de Pittsburgh, Pennsylvania) había demostrado la conjetura de Kepler, que afirma que la mejor forma de apilar naranjas en una caja es la utilizada en todas las fruterías (el empaquetamiento de esferas más eficiente posible). 

Un problema que había estado abierto desde 1611, cuando lo propuso Johannes Kepler. En algunos medios de prensa y TV se llegó a decir “creo que es una pérdida de tiempo y dinero de los contribuyentes.” Hoy en día, las matemáticas del empaquetamiento de esferas se utilizan en ingeniería de comunicaciones y teoría de la información y de la codificación para planificar canales de comunicación y para desarrollar códigos correctores de errores. El problema de Kepler fue mucho más difícil de demostrar de lo que Kepler nunca pudo imaginar. De hecho, el problema más sencillo sobre la mejor forma de empaquetar círculos planos fue demostrado en 1940 por László Fejes Tóth.



Otro problema sencillo cuya solución costó muchos años fue el problema de las esferas que se besan, planteado en el siglo XVII por Isaac Newton y David Gregory: Dada una esfera, ¿cuántas esferas iguales que ésta pueden colocarse con la condición de que toquen a la inicial? En dos dimensiones es fácil demostrar que la respuesta es 6. Newton pensaba que 12 era el número máximo en 3 dimensiones. Lo es, pero la demostración tuvo que esperar al trabajo de Kurt Schütte y Bartel van der Waerden en 1953. Oleg Musin demostró en 2003 que el número de besos en 4 dimensiones es 24. En cinco dimensiones sólo se sabe que se encuentra entre 40 y 44. Sabemos la respuesta en ocho dimensiones, que es 240, como demostró Andrew Odlyzko en 1979. Más aún, en 24 dimensiones la respuesta es 196.560. Estas demostraciones son más sencillas que la del resultado en tres dimensiones y utilizan empaquetamiento de esferas mucho más complicados e increíblemente densos, la red E8 en 8 dimensiones y la red de Leech en 24 dimensiones.

Todo esto es muy bonito, pero ¿sirve para algo? En la década de 1960, un ingeniero llamado Gordon Lang diseñó los sistemas de comunicación por módem utilizando estos empaquetamientos de esferas multidimensionales. 

El problema de la comunicación analógica en una línea telefónica es el ruido. En una conversación entre dos personas el lenguaje natural es tan redundante que el ruido importa poco, pero para enviar datos es necesario introducir ciertas redundancias y utilizar técnicas correctoras de error, lo que reduce el ancho de banda del canal (la cantidad de información que se puede transmitir por segundo). Lang utilizó los empaquetamientos de esferas para lidiar con el ruido y aumentar al máximo el ancho de banda. Para ello utilizó una codificación basada en el empaquetamiento E8 (más tarde también se utilizó el de Leech). 

En la década de los 70, el trabajo de Lang fue clave para el desarrollo temprano de la internet. Donald Coxeter, matemático que ayudó a Lang en su trabajo, dijo que estaba “horrorizado de que sus bellas teorías hubieran sido manchadas de esta manera por las aplicaciones.”
Comparte este artículo en tus redes sociales:

Cuaterniones de Hamilton: Origen y utilidad en videojuegos



La historia de cómo descubrió los cuaterniones el matemático irlandés William Rowan Hamilton (1805–1865).
Se dice que esto ocurrió el 16 de octubre 1843 mientras estaba caminando sobre el Puente de “Broome” en Dublín y tras más de dos décadas echándole cabeza a la multiplicación de tripletas, pues  había estado buscando una manera de extender el sistema de números complejos a tres dimensiones de tal forma que permitiera describir las rotaciones tridimensionales respecto a un eje arbitrario como los números complejos describen las rotaciones bidimensionales. 
Su idea feliz ahora nos resulta casi obvia, no era posible hacerlo con ternas de números, las rotaciones tridimensionales requieren un sistema de números con cuatro componentes imaginarias. Si los números complejos son de la forma a + i b, donde a y b son números reales, e i es la raíz cuadrada de –1, entonces los cuaterniones deben tener la forma
a + bi + cj + dk , donde las unidades imaginarias cumplen que  i2 = j2 = k2 = ijk= –1.


Hamilton pasó el resto de su vida tratando de convencer a toda la comunidad de matemáticos de que los cuaterniones eran una solución elegante a múltiples problemas en geometría, mecánica y óptica. Tras su muerte, pasó el testigo a Peter Guthrie Tait (1831–1901), profesor de la Universidad de Edimburgo. William Thomson (Lord Kelvin) quien pasó más de 38 años discutiendo con Tait sobre la utilidad real de los cuaterniones. Kelvin prefería el cálculo vectorial, que a finales del siglo 19 eclipsó a los Cuaterniones.  Los matemáticos del siglo 20, en general, consideran los cuaterniones como una hermosa construcción matemática sin ninguna utilidad práctica. Así fue hasta que por sorpresa, en 1985, el informático Ken Shoemake presentó la idea de interpolar rotaciones usando cuaterniones en el congreso de gráficos por computador más importante del mundo (el ACM SIGGRAPH). Interpolar matrices preservando la ortogonalidad de las matrices de rotación es muy engorroso y utilizar los ángulos de Euler ayuda poco. 

Las técnicas convencionales de interpolación para númeos reales se extienden de forma natural a los números complejos y a los cuaterniones. Interpolaciones suaves y rápidas de calcular que desde entonces se utilizan en todos los juegos por ordenador que presentan gráficos tridimensionales. 

En la actualidad, los cuaterniones son imprescindibles en robótica y en visión por ordenador, además en gráficos por ordenador. Al final del siglo 20, la guerra entre Kelvin y Tait fue ganada por este último. Hamilton vio cumplido su sueño en la industria de los videojuegos, 150 después de su descubrimiento, una industria que mueve más dinero en el mundo que la industria del cine (más de 100 mil millones de dólares en 2010).
Sociedad Británica para la Historia de las Matemáticas
Comparte este artículo en tus redes sociales:

Modelo matemático define las características del líder

Según el estudio, dirigido desde la Universidad de Cambridge (Reino Unido), los líderes son personas audaces, extrovertidas y curiosas. El liderazgo conlleva cierto riesgo y las personas que lo consiguen tienen más capacidad que otras de asumirlo y de tomar decisiones para el conjunto del grupo.  Y es que el temperamento determina la capacidad de una persona para ser líder o seguidor.  Los investigadores restan importancia al hecho de disponer de información o recursos para llegar a ser líder, tal y como establecían trabajos anteriores.



Los autores realizaron la investigación mediante un modelo matemático y exploraron cómo surgían los líderes en diferentes situaciones, además de predecir los rasgos de su personalidad. Para ello, sometieron a una población de estudio a un sencillo juego de coordinación que dividieron en diferentes grupos. Aquellos que reunieron más seguidores y acordaron decisiones conjuntas recibieron su recompensa.

"La proporción de líderes intrínsecos en la población aumenta con el grado de conflicto que existe entre los miembros del grupo", señalan los autores. De esta forma, cuando el nivel de conflicto es débil, la mayoría de los individuos son seguidores, mientras que cuando la tensión aumenta, el número de líderes también lo hace.

Según el estudio, dirigido desde la Universidad de Cambridge (Reino Unido), los líderes son personas audaces, extrovertidas y curiosas. El liderazgo conlleva cierto riesgo y las personas que lo consiguen tienen más capacidad que otras de asumirlo y de tomar decisiones para el conjunto del grupo.

Los investigadores observaron que las parejas de individuos más productivas estaban formadas por unapersona que llevaba la iniciativa y otra que actuaba como seguidor. Aquellas en las que los dos individuos eran líderes o seguidores, llegaban a un punto muerto.
Comparte este artículo en tus redes sociales:

Propiedades y primeras técnicas de integración de funciones

Según Wikipedia El cálculo integral, encuadrado en el cálculo infinitesimal, es una rama de las matemáticas en el proceso de integración o antiderivación, es muy común en la ingeniería, economía y en la matemática en general y se utiliza principalmente para el cálculo de áreas y volúmenes de regiones y sólidos de revolución. Fue usado por primera vez por científicos como Arquímedes, René Descartes, Isaac Newton, Gottfried Leibniz e Isaac Barrow. Los trabajos de este último y los aportes de Newton generaron el teorema fundamental del cálculo integral, que propone que la derivación y la integración son procesos inversos. Ejemplo: Integración por sustitución


Mas videos...








Para ver los ejercicios del  método de Integración por partes Clic acá

Comparte este artículo en tus redes sociales:

La fórmula de Google es uno de los secretos mejor guardados en Internet

Móviles, ordenadores, redes sociales... nos movemos constantemente entre operaciones matemáticas. Una ciencia que encierra todavía algunos curiosos secretos como el algoritmo que calcula las búsquedas de Google.  


Inspiración, creación e intuición. Son algunos de los ingredientes de las matemáticas, esa ciencia que nos acompaña en nuestro día a día, ya sea en el uso del móvil o cuando nos conectamos a Internet para chatear con los amigos. Una ciencia que sigue planteando retos a los investigadores, como los "Problemas del milenio", cuya resolución sería premiada, según anunció el Clay Mathematics Institute en el año 2000, con la suma de un millón de dólares cada uno (y a día de hoy, únicamente uno de estos problemas ha sido resuelto). Las matemáticas, una ciencia de la que dependemos sin duda para el desarrollo y evolución de las nuevas tecnologías.

 

A continuación, la entrevista a Carlos José Navas. Profesor de Finanzas de la UMH y miembro de la Real Sociedad Matemática Española por parte de un periódico de La Provincia de Alicante (España).

¿Tiene Google una fórmula secreta como la Coca-Cola?
Todos los que usamos Google (que somos la práctica totalidad de los internautas) sabemos lo importante que es aparecer entre las primeras posiciones al realizar la búsqueda. La forma en la que Google determina qué enlace debe aparecer antes de otro es mediante una familia de algoritmos llamada PageRank, que fue la gran aportación de la Tesis Doctoral de los fundadores de Google, Larry Page y Sergey Brin, en la Universidad de Stanford. Simplificado, PageRank funciona como un índice de popularidad basado en enlaces: cuantos más enlaces tiene una página desde otras, mayor es su "PageRank". El argoritmo original es conocido (puede verse por ejemplo en http://es.wikipedia.org/wiki/PageRank), pero el que funciona en la actualidad sí, es un secreto como el de la Coca-Cola y uno de los mejor guardados en Internet. Google lo modifica cada cierto tiempo para hacer frente a los intentos de manipular los resultados (la última actualización fue en enero de este año: 2011).

¿Y hasta qué punto dependemos de las matemáticas con las nuevas tecnologías?
Toda la ciencia informática está basada en matemáticas. Lo que nosotros percibimos como una web, un email, un Tweet, una foto en Facebook... detrás son variables, valores, funciones, operaciones lógicas...y en última instancia, al final no son más que 0s y 1s interpretados por los ordenadores.

¿Ocurre de igual modo cuando utilizamos el teléfono móvil?
Sí y son fundamentales. Por poner un simple ejemplo: al realizar una llamada, el teléfono lo que hace es enviar una señal electrónica que transmite una versión digitalizada de lo que estamos diciendo. Para esta trasmisión es fundamental dos cosas: comprimir los datos, para que lleguen de forma casi inmediata al receptor, y corregir los posibles errores, para que lo que llegue sea realmente lo que decimos. Pues bien, ambas labores se basan en algoritmos matemáticos.

¿Es tan difícil de adquirir, aprender o dominar un lenguaje de programación para el ordenador? ¿Hay uno o muchos como ocurre con los idiomas?
Hay muchos, y con la explosión de la web por un lado y de los dispositivos móviles por otro muchos desarrolladores están aprendiendo nuevos lenguajes para adentrarse en esos mercados. Yo confieso que es uno de mis retos pendientes.

¿Qué problemas obsesionan en estos momentos al mundo matemático? ¿Son los seis "Problemas del milenio" como señalan algunos expertos?
Los seis siguen estando ahí, desde luego, pero no creo que sean una obsesión más que para aquellas personas que hayan decidido dedicarse a tratar de encontrarles solución. Es en la matemática aplicada, por ejemplo, en cómo afrontar un problema que jamás se había dado hasta hace 30 años que es el disponer de una cantidad masiva de datos e información y cómo tratarla, donde yo veo más campo para el estudio y que surjan cosas nuevas.

¿Están los jóvenes cada vez más distantes de las matemáticas? ¿Hay curiosidad por los retos difíciles?
Siempre que surge la pregunta sobre los jóvenes, yo recuerdo que alguien me dijo que un viejo profesor que se quejaba de que las nuevas generaciones estaban echadas a perder... y que ese viejo profesor era Aristóteles... no sé si será cierta, pero, se "non è vero, è ben trovato". La revolución de Internet está encabezada por programadores con un dominio excelente de las matemáticas.

¿Depende de las matemáticas el futuro de Internet?
Sí, sin duda. Las soluciones a los problemas de almacenamiento de datos, de velocidades de conexión, de ampliar las posibilidades de la red... todos, en su esencia, son problemas matemáticos. También ocurre con los videojuegos y la fotografía que, como la astronomía, tiene una base puramente matemática, tanto la óptica como la digital.

Comparte este artículo en tus redes sociales:

Niño de trece años puede revolucionar la energía solar

El adolescente ha aplicado un famoso modelo matemático del siglo XIII y se ha inspirado en la disposición de las hojas de los árboles para cambiar la orientación de las células fotovoltaicas 
El niño Aidan Dwyer ha conseguido aumentar hasta en un 50% el redimiento de las células fotovoltaicas  
Algunos descubrimientos trascendentales para la ciencia tienen lugar de forma casual. Quizás la historia de Newton, la manzana que cae y el descubrimiento de la forma en que funciona la gravedad sea apócrifa, pero el descubrimiento de Aidan Dwyer es absolutamente real. 

Este estudiante de solo 13 años de edad, paseando por un bosque, descubrió que si se orientan las celdas fotovoltaicas respecto del Sol de una determinada manera, su rendimiento puede mejorar entre un 20% y 50%. Parece que la disposición de las ramas de los árboles, relacionada con la serie de números descrita en el siglo XIII por el matemático italiano Leonardo de Pisa (también conocido como Fibonacci) no es causal, y permite maximizar el aprovechamiento de la energía solar. 


Distribución de los paneles
Hay historias relacionadas con la ciencia que parecen extraídas del argumento de una buena novela, y esta es una de ellas. Un joven estudiante estadounidense de séptimo grado llamado Aidan Dwyer estaba dando un paseo por los bosques de las Catskill Mountains, al norte del estado de Nueva York, cuando notó que las ramas desnudas de los árboles no estaban orientadas al azar. Esto es algo que generalmente pasa desapercibido para el 99% de las personas, y seguramente para prácticamente todos los niños. Pero Aidan lo notó, y después de investigar un poco “descubrió” algo de lo que ya se ha hablado en NeoTeo: la pauta de distribución de las hojas en las ramas y de las ramas en el tronco de muchos árboles siguen la denominada Sucesión de Fibonacci, una serie de números descrita en el siglo XIII por el matemático italiano Leonardo de Pisa.
En efecto, desde hace mucho se sabe que la naturaleza utiliza con frecuencia esta serie de números en sus “diseños”, en la que cada término es la suma de los dos anteriores (1, 1, 2, 3, 5, 8, 13, 21, 34... o Fn = Fn-1 + Fn-2). Desde la distribución de las hojas de una lechuga hasta el número de conejos que podemos esperar tener después de una determinada cantidad de generaciones, pasando por número de individuos existente en cada generación de ancestros de un zángano, pueden explicarse a partir de esta serie. Pero esto es algo que la mayoría de los niños de 13 años suelen ignorar.
Aidan Dwyer lo notó, y tuvo la genial idea de relacionar este hecho con la “dependencia” de la energía solar que tienen los árboles. Puso manos a la obra, y construyó dos pequeños captadores solares compuestos por un puñado de células fotovoltaicas para ver si la forma en que las ramas crecían en los árboles tenía realmente alguna influencia en la cantidad de luz que cada hoja recibía. Uno de los modelos agrupaba los pequeños paneles siguiendo una distribución plana, igual a la que normalmente utilizamos para acomodar las células sobre cualquier techo. El segundo reproducía el patrón que el niño había observado en las ramas de los árboles.
Comparte este artículo en tus redes sociales:

Videoteca

Videos Discovery

Videos Discovery
Discovery en la Escuela

Aula virtual Cálculo Integral

Aula virtual Cálculo Integral
Sesiones en Wiziq

Aula Virtual Estadística

Aula Virtual Estadística
Sesiones en Wiziq

Zona Wolfram Alpha

Zona Wolfram Alpha
ir a Herramientas
Este sitio inició el día 1 de abril de 2010. Estas son las estadísticas

   Publicaciones
   Comentarios
 Días online

Vistas de página en total