English French German Spain Italian Dutch Russian Portuguese Japanese Korean Arabic Chinese Simplified

lunes, enero 06, 2014

Estadística

La estadística:  Ciencia que estudia la recolección, análisis e interpretación de datos, ya sea para ayudar en la toma de decisiones o para explicar condiciones regulares o irregulares de algún fenómeno o estudio aplicado, de ocurrencia en forma aleatoria o condicional. Sin embargo estadística es más que eso, en otras palabras es el vehículo que permite llevar a cabo el proceso relacionado con la investigación científica.





lunes, noviembre 11, 2013

Matemáticas, de la vida diaria 
a la crisis mundial

Con motivo del  Congreso Matemático de las Américas, que tuvo lugar la en agosto de este año )2013), me surgió la duda de qué tan cierta es esa intuición que todos podemos tener de que las matemáticas son importantes para la vida diaria más allá del cambio que nos dan en el mercado (es decir, más allá de las sumas y las restas).

Y algunos estudios recientes demuestran que pueden ser mucho más importantes de lo que cualquiera podía sospechar y ser relevantes no sólo para la vida diaria de las personas sino para el futuro de la sociedad.
HABILIDAD INFANTIL Y SALARIOS
Según un estudio publicado este año en la revista especializada Psychological Science, la habilidad para las matemáticas y la lectura que un individuo muestre a los siete años está más relacionada con el estatus socioeconómico que tendrá varias décadas más tarde que con su inteligencia, nivel educativo y el estatus socioeconómico de sus padres.
Stuart Ritchie y Timothy Bates, de la Universidad de Edimburgo, hicieron su investigación con datos del National Child Development Study, en el que se siguió a 17,000 personas en Inglaterra, Escocia y Gales por cerca de 50 años.
El estudio reveló que los participantes con mayores habilidades lectora y matemática a los siete años acabaron teniendo, 35 años después, ingresos más altos, mejores casas y trabajos, independientemente de otros factores.
ENTRE LAS CAUSAS DE LA CRISIS
Lo anterior confirma la intuición, pero el estudio alarmante fue publicado hace unas semanas en la revista Proceedings of the National Academy of Sciences, y refiere que la probabilidad de que una persona deje de pagar su hipoteca (en particular una de las famosas subprime) es más alta mientras menor sea su habilidad para realizar cálculos matemáticos.
Los autores, Kristopher Gerardi (del departamento de investigación del Federal Reserve Bank of Atlanta), Lorenz Goette (de la Facultad de Negocios y Economía de la Universidad de Lausana) y Stephan Meier (de la Escuela de Negocios de la Universidad de Columbia), no dudan en iniciar su artículo de la siguiente forma:
“Un índice sin precedentes en los impagos de hipotecas subprime estadounidenses precipitó una severa crisis financiera global a finales del 2008 […] Sin embargo, la razón fundamental por la que se dejaron de pagar tantas hipotecas es aún desconocida. Este artículo presenta evidencia empírica que muestra que la habilidad para llevar a cabo operaciones matemáticas básicas se asocia negativamente con la propensión que uno tenga a fallar en el pago de la hipoteca”.
Los autores analizaron un conjunto de datos de 339 personas que pidieron sus préstamos entre el 2006 y el 2007 y midieron sus habilidades matemáticas a través de entrevistas telefónicas.
Los autores aclaran: “No encontramos datos que soportaran la hipótesis de que la habilidad matemática tuvo un impacto en el pago de la hipoteca a través de la selección del contrato hipotecario. En cambio, nuestros resultados sugieren que los individuos con escasa habilidad numérica fallaron en sus pagos debido a comportamientos no relacionados con la selección inicial de su contrato”.
PERO NO TODO ES SU CULPA
Por supuesto que otros economistas, como el influyente Nobel Paul Krugman (en ¡Detengamos esta crisis ya!, de editorial Crítica), encuentran explicaciones para la falta de pagos no en los morosos sino en un sistema que se fue desregulando y que permitió que se dieran hipotecas a tasas altas a muchas personas que en principio no podían pagar, pero que benefició ampliamente a quienes las otorgaron.
Otro estudio publicado recientemente, hecho en la Universidad de Nueva York, revela que a latinos y negros se les negaron las hipotecas prime más que a sus equivalentes en nivel socioeconómico blancos, por lo que personas de esos grupos minoritarios fueron los principales receptores de las subprime.
Jacob Faber, autor del estudio que fue presentado en la reunión anual de la American Sociological Association dice, también categórico:
“La ausencia histórica de créditos accesibles en comunidades de color y para solicitantes de color, que creó un vacío en el que crecieron las ofertas subprime, no fue un accidente. Si bien no es posible, con este estudio, identificar responsables de causar perjuicios personales entre los otorgantes (las casas de crédito), las disparidades raciales en el otorgamiento de las (hipotecas) subprime son, sin embargo, parte de una larga trayectoria estructural de despojo basada en la raza”.
Faber analizó datos de 8,886 instituciones de crédito e incluyó 3 millones 819,923 solicitudes, de las cuales 41.63% fue denegado, 52.97% fue aprobado a tasa prime y 5.40% aprobado con tasa subprime (con una tasa de interés tres o más puntos por encima de la tasa de referencia de los bonos del tesoro).
Haya sido la codicia (y la habilidad matemática) de las casas de crédito o la impericia de los morosos lo que realmente precipitó la crisis, de lo que no cabe duda es de que la educación matemática es fundamental.
Tomado del Economista con fines académicos

domingo, septiembre 01, 2013

Las plantas usan las matemáticas para sobrevivir

Las plantas saben contar. Tienen una capacidad incorporada para las matemáticas, que las ayuda a regular las reservas de alimentos durante la noche.
Científicos en Reino Unido dijeron estar "sorprendidos" de encontrar un ejemplo de un cálculo aritmético tan sofisticado en biología.
Las aves podrían utilizar los mismos métodos para preservar los niveles de grasa durante la migración.Modelos matemáticos muestran que la cantidad de almidón consumido durante la noche se calcula a través de una división en un proceso que involucra productos químicos de las hojas, de acuerdo a un reporte de un equipo del John Innes Centre en la publicación e-Life.
Los científicos estudiaron la planta Arabidopsis, considerada una planta modelo para experimentos.

"Asombrados"

"Esto no es una prueba de la inteligencia de una planta. Simplemente sugiere que las plantas tienen un mecanismo diseñado para regular automáticamente la velocidad con la que queman carbohidratos en la noche. Las plantas no hacen matemáticas voluntariamente y con un propósito en mente, como lo hacemos nosotros"
Dr. Richard Buggs de Queen Mary, Universidad de Londres
Durante la noche, cuando la planta no puede utilizar la energía de la luz solar para convertir el dióxido de carbono en azúcares y almidón, debe regular sus reservas de almidón para asegurar que duren hasta el amanecer.
Los experimentos, realizados por científicos del Centro John Innes, en Norwich (este de Inglaterra), muestran que para ajustar su consumo de almidón de manera tan precisa la planta debe realizar un cálculo matemático: una división aritmética.
"Están haciendo realmente matemáticas de una manera simple y química: eso es increíble, a los científicos nos sorprendió ver eso", le dijo a la BBC la encargada del estudio, la profesora Alison Smith.
Los científicos usaron modelos matemáticos para investigar cómo una división puede llevarse a cabo dentro de una planta.
Durante la noche, los mecanismos dentro de la hoja miden la cantidad de almidón. Y la información sobre el tiempo proviene de un reloj interno, similar al del reloj biológico del cuerpo humano.

"Cálculo sofisticado"

Los investigadores sugirieron que el proceso está mediado por las concentraciones de dos tipos de moléculas, llamadas "S" para el almidón y "T" para el tiempo.
"Están haciendo realmente matemáticas de una manera simple y química: eso es increíble, a los científicos nos sorprendió ver eso"
Profesora Alison Smith, encargada del estudio
Si las moléculas de "S" estimulan la descomposición de almidón, mientras que las moléculas "T" evitan que esto ocurra, entonces la tasa de consumo de almidón se establece por la relación de moléculas "S" a "T". En otras palabras, "S" dividido "T".
"Este es el primer ejemplo concreto en la biología de un cálculo aritmético tan sofisticado", dijo el profesor Martin Howard, del John Innes Centre.
Los científicos creen que mecanismos similares pueden operar en los animales, como las aves que controlan las reservas de grasa durante la migración a larga distancia, o cuando se les priva de alimentos al incubar los huevos.
Al comentar sobre la investigación, el Dr. Richard Buggs de Queen Mary, Universidad de Londres, dijo: "Esto no es una prueba de la inteligencia de una planta. Simplemente sugiere que las plantas tienen un mecanismo diseñado para regular automáticamente la velocidad con la que queman carbohidratos en la noche". "

Las plantas no hacen matemáticas voluntariamente y con un propósito en mente, como lo hacemos nosotros", agregó.
Tomado de BBC.mundo
Escuche este texto acá

sábado, agosto 10, 2013

Matemáticas usadas para combatir al cáncer


Aquí hay una buena razón para prestar atención en la clase de matemáticas. El pasado 14 de jumio de 2013, Nature Communications publicó un artículo realizado por investigadores de Ottawa que describe qué tan avanzado está el modelado matemático que se puede utilizar para combatir el cáncer. La matemática predice cómo diferentes tratamientos y modificaciones genéticas podrían permitir que los virus oncolíticos que matar el cáncer sin dañar las células buenas.

El equipo de los doctores John C. Bell y Mads Kaern, ambos de la Facultad de Medicina en la Universidad de Ottawa, ha encontrado estrategias idóneas de uso de modelos matemáticos avanzados para combatir al cáncer con la mayor eficiencia posible. Las matemáticas predicen cómo diferentes tratamientos y modificaciones genéticas podrían permitir a los virus oncolíticos (virus capaces de matar selectivamente a células cancerosas) superar las defensas naturales que las células cancerosas utilizan para protegerse de las infecciones virales.

Los virus oncolíticos son especiales por su citada capacidad de matar células cancerosas sin dañar a las sanas. Desafortunadamente, el cáncer es una enfermedad muy complicada y variada, por lo que algunos de esos virus funcionan bien en determinadas circunstancias pero no en otras. Como resultado, se han invertido muchos esfuerzos en tratar de modificar del mejor modo posible esos virus para hacerlos más seguros, de tal manera que nunca dañen tejidos sanos y al mismo tiempo sean aún más eficientes en la eliminación de células cancerosas.

Los investigadores de la Universidad de Ottawa en Canadá, usaron modelación matemática para desarrollar estrategias que hagan a las células cancerosas tan vulnerables a la infección de esos virus como sea posible, con ese resultado tan buscado de que esos virus exterminen con eficiencia a las células cancerosas pero sin afectar a las células sanas.

Mediante el uso de estos modelos matemáticos para predecir cómo cada modificación en esos virus repercutiría en las células normales y en las cancerosas, es factible, tal como estos investigadores han demostrado, encontrar "atajos" en diversas líneas de investigación, ayudando así a la comunidad científica a acelerar el proceso de investigación y descubrimientos.

Bell y Kaern establecieron un modelo matemático que describe un ciclo de infección, incluyendo la forma en que un virus se replica, se disemina y activa los mecanismos de defensa celular. A partir de ahí, estos científicos usaron su conocimiento acerca de las diferencias fisiológicas clave entre las células normales y las cancerosas para identificar cómo la modificación del genoma de los virus podría contrarrestar las defensas antivirales de las células cancerosas.

Las simulaciones del modelo fueron notablemente acertadas, mostrando la eficiencia de las modificaciones virales identificadas para erradicar el cáncer en un modelo de la enfermedad en ratones.

Esta prometedora línea de investigación ofrece muchas perspectivas nuevas. Apenas se han dado los primeros pasos por ella, al trabajar sobre un tipo específico de células cancerosas. Los científicos investigarán ahora otros tipos de células tumorales malignas bajo los mismos planteamientos básicos, a fin de acelerar los avances que permitan perfeccionar el ataque mediante virus contra las células cancerosas.

Fragmentos tomados de Noticias de la ciencia

sábado, abril 20, 2013

Premio Abel 2013 para Pierre Deligne, hacedor de puentes entre islas matemáticas

La Academia Noruega de Ciencias y Letras ha concedido el premio Abel al matemático belga Pierre Deligne, reconocido por sus colegas como un innovador arquitecto de puentes entre las distintas áreas de las matemáticas, puentes que revelan nexos profundos entre islas del conocimiento previamente percibidas como compartimentos estancos. Deligne trabaja actualmente en el Instituto de Estudios Avanzados de Princeton.

El galardón, a menudo referido como el Nobel de las matemáticas, reconoce las “contribuciones seminales” de Deligne a la geometría algebraica, que a su vez tuvieron un “impacto transformador en la teoría de números” y otros campos relacionados. “Sus poderosos conceptos, ideas, resultados y métodos”, sigue reconociendo la Academia, “siguen influyendo en el desarrollo de la geometría algebraica, y de las matemáticas en su conjunto”. La dotación del premio es de unos 800.000 euros, y el matemático belga lo recibirá el 21 de mayo del rey Harald de Noruega.

“Deligne inició su carrera en Bélgica”, comenta el director del ICMAT en Madrid, Manuel de León, “pero como les suele pasar a los medallistas Fields europeos, acabó en Princeton; los americanos se los llevan”. El premio Abel reconoce las contribuciones “de extraordinaria profundidad e influencia” a las ciencias matemáticas, y se concede desde 2003. La medalla Fields, que también se considera a veces el Nobel de las matemáticas, intenta más bien inyectar estímulo a los matemáticos jóvenes, explica De León.

El matemático José Ignacio Burgos, también investigador del ICMAT y muy familiarizado con las aportaciones de Deligne, explica que el premiado no sólo tendió nexos creativos para derribar algunas de las “fronteras internas” de las matemáticas (como la que separa la geometría del álgebra), sino también otras fronteras externas, con implicaciones en la física teórica.

“La geometría algebraica tuvo en principio unos objetivos simples”, dice Burgos. “Se trataba de saber qué figuras geométricas pueden ser soluciones de las ecuaciones polinomiales; pero esta materia ha alcanzado con el tiempo un grado de sofisticación soberbio, y subyace a la teoría de cuerdas de la física teórica”.La teoría de cuerdas es uno de los modelos con que los físicos intentan unificar la mecánica cuántica, que reina en los dominios de lo muy pequeño, con la relatividad general, que predomina a las escalas planetarias y cósmicas.

“Pierre Deligne es indisputablemente uno de los más grandes matemáticos del mundo”, sostiene sir Williams Timothy Gowers –conocido para la ciencia como W. T. Gowers—, profesor del departamento de matemática pura de la Universidad de Cambridge y medallista Fields. “Aunque uno nunca sabe quién puede ganar el premio Abel de un año dado, era virtualmente inevitable que Deligne se lo iba a llevar a su debido tiempo, así que el anuncio de hoy tiene tan poco de sorpresa como lo pueda tener un anuncio de este tipo”. Como verán, la prosa de W. T. Gowers tiene la precisión cortante de una ecuación polinómica.

Tomado de El País

martes, abril 09, 2013

Un algoritmo matemático localiza los nodos más influyentes de una red

Un equipo de científicos de la Universidad de Leipzig (Alemania), la Universidad de Barcelona y el Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC, centro mixto CSIC- Universidad de las Islas Baleares) ha desarrollado una metodología que permite clasificar los elementos de una red en función de su importancia para el funcionamiento del sistema. El artículo se publica en  la revista Scientitic Reports.

Red de conexiones aéreas entre aeropuertos en España (rojo : alta probabilidad, y azul, probabilidad baja).El estudio muestra que combinando los datos correspondientes a la estructura y dinámica de la red, un logaritmo matemático puede señalar sus nodos más “influyentes”, es decir, aquellos cuya actividad determina el éxito del sistema. La idea es similar a la que rige los buscadores de internet, que analizan y seleccionan las entradas más relevantes de cada tema.

“En este caso hemos aplicado un algoritmo matemático a las dinámicas y mecanismos habituales de una red”, explica el investigador del IFISC Víctor Eguíluz. “Y el resultado es una clasificación ordenada de los puntos de conexión con mayor peso”. Muchos procesos se propagan a través de estas redes de interacción complejas, como las enfermedades o la información.

“La ventaja de conocer los puntos más importantes del recorrido es el ahorro de esfuerzos tanto para potenciar como para bloquear el proceso –comenta el investigador. Por ejemplo, si conoces la red a través de la cual se transmite una enfermedad y tienes un número limitado de vacunas, puedes saber dónde tienes que aplicarlas para conseguir que la enfermedad se extienda lo menos posible”.


Red de conexiones aéreas entre aeropuertos en España (el rojo señala alta probabilidad, y el azul, probabilidad baja). (Imagen: J. Fernandez-Gracia, P. Fleurquin, M.A. Tugore)

Los resultados del trabajo sirven para cuantificar en qué medida puede controlarse la eficiencia de un sistema manipulando sólo un nodo. Un caso paradigmático de este aspecto es el tráfico aéreo. Cuando un aeropuerto sufre retrasos en sus vuelos, en función de su relevancia dentro del sistema, los demás aeropuertos lo notarán más o menos.

Por el momento, las conclusiones de este estudio son solo teóricas. Los investigadores se han basado en las dinámicas de sistemas complejos descritos en otras publicaciones anteriores. Aún así, el sistema permite analizar las probabilidades de dispersión de, por ejemplo, una enfermedad o una moda, desde un punto hacia el resto de la red. (Fuente: SINC/CSIC)