English French German Spain Italian Dutch Russian Portuguese Japanese Korean Arabic Chinese Simplified

martes, agosto 30, 2011

La fórmula de Google es uno de los secretos mejor guardados en Internet

Móviles, ordenadores, redes sociales... nos movemos constantemente entre operaciones matemáticas. Una ciencia que encierra todavía algunos curiosos secretos como el algoritmo que calcula las búsquedas de Google.  


Inspiración, creación e intuición. Son algunos de los ingredientes de las matemáticas, esa ciencia que nos acompaña en nuestro día a día, ya sea en el uso del móvil o cuando nos conectamos a Internet para chatear con los amigos. Una ciencia que sigue planteando retos a los investigadores, como los "Problemas del milenio", cuya resolución sería premiada, según anunció el Clay Mathematics Institute en el año 2000, con la suma de un millón de dólares cada uno (y a día de hoy, únicamente uno de estos problemas ha sido resuelto). Las matemáticas, una ciencia de la que dependemos sin duda para el desarrollo y evolución de las nuevas tecnologías.

 

A continuación, la entrevista a Carlos José Navas. Profesor de Finanzas de la UMH y miembro de la Real Sociedad Matemática Española por parte de un periódico de La Provincia de Alicante (España).

¿Tiene Google una fórmula secreta como la Coca-Cola?
Todos los que usamos Google (que somos la práctica totalidad de los internautas) sabemos lo importante que es aparecer entre las primeras posiciones al realizar la búsqueda. La forma en la que Google determina qué enlace debe aparecer antes de otro es mediante una familia de algoritmos llamada PageRank, que fue la gran aportación de la Tesis Doctoral de los fundadores de Google, Larry Page y Sergey Brin, en la Universidad de Stanford. Simplificado, PageRank funciona como un índice de popularidad basado en enlaces: cuantos más enlaces tiene una página desde otras, mayor es su "PageRank". El argoritmo original es conocido (puede verse por ejemplo en http://es.wikipedia.org/wiki/PageRank), pero el que funciona en la actualidad sí, es un secreto como el de la Coca-Cola y uno de los mejor guardados en Internet. Google lo modifica cada cierto tiempo para hacer frente a los intentos de manipular los resultados (la última actualización fue en enero de este año: 2011).

¿Y hasta qué punto dependemos de las matemáticas con las nuevas tecnologías?
Toda la ciencia informática está basada en matemáticas. Lo que nosotros percibimos como una web, un email, un Tweet, una foto en Facebook... detrás son variables, valores, funciones, operaciones lógicas...y en última instancia, al final no son más que 0s y 1s interpretados por los ordenadores.

¿Ocurre de igual modo cuando utilizamos el teléfono móvil?
Sí y son fundamentales. Por poner un simple ejemplo: al realizar una llamada, el teléfono lo que hace es enviar una señal electrónica que transmite una versión digitalizada de lo que estamos diciendo. Para esta trasmisión es fundamental dos cosas: comprimir los datos, para que lleguen de forma casi inmediata al receptor, y corregir los posibles errores, para que lo que llegue sea realmente lo que decimos. Pues bien, ambas labores se basan en algoritmos matemáticos.

¿Es tan difícil de adquirir, aprender o dominar un lenguaje de programación para el ordenador? ¿Hay uno o muchos como ocurre con los idiomas?
Hay muchos, y con la explosión de la web por un lado y de los dispositivos móviles por otro muchos desarrolladores están aprendiendo nuevos lenguajes para adentrarse en esos mercados. Yo confieso que es uno de mis retos pendientes.

¿Qué problemas obsesionan en estos momentos al mundo matemático? ¿Son los seis "Problemas del milenio" como señalan algunos expertos?
Los seis siguen estando ahí, desde luego, pero no creo que sean una obsesión más que para aquellas personas que hayan decidido dedicarse a tratar de encontrarles solución. Es en la matemática aplicada, por ejemplo, en cómo afrontar un problema que jamás se había dado hasta hace 30 años que es el disponer de una cantidad masiva de datos e información y cómo tratarla, donde yo veo más campo para el estudio y que surjan cosas nuevas.

¿Están los jóvenes cada vez más distantes de las matemáticas? ¿Hay curiosidad por los retos difíciles?
Siempre que surge la pregunta sobre los jóvenes, yo recuerdo que alguien me dijo que un viejo profesor que se quejaba de que las nuevas generaciones estaban echadas a perder... y que ese viejo profesor era Aristóteles... no sé si será cierta, pero, se "non è vero, è ben trovato". La revolución de Internet está encabezada por programadores con un dominio excelente de las matemáticas.

¿Depende de las matemáticas el futuro de Internet?
Sí, sin duda. Las soluciones a los problemas de almacenamiento de datos, de velocidades de conexión, de ampliar las posibilidades de la red... todos, en su esencia, son problemas matemáticos. También ocurre con los videojuegos y la fotografía que, como la astronomía, tiene una base puramente matemática, tanto la óptica como la digital.

lunes, agosto 29, 2011

Niño de trece años puede revolucionar la energía solar

El adolescente ha aplicado un famoso modelo matemático del siglo XIII y se ha inspirado en la disposición de las hojas de los árboles para cambiar la orientación de las células fotovoltaicas 
El niño Aidan Dwyer ha conseguido aumentar hasta en un 50% el redimiento de las células fotovoltaicas  
Algunos descubrimientos trascendentales para la ciencia tienen lugar de forma casual. Quizás la historia de Newton, la manzana que cae y el descubrimiento de la forma en que funciona la gravedad sea apócrifa, pero el descubrimiento de Aidan Dwyer es absolutamente real. 

Este estudiante de solo 13 años de edad, paseando por un bosque, descubrió que si se orientan las celdas fotovoltaicas respecto del Sol de una determinada manera, su rendimiento puede mejorar entre un 20% y 50%. Parece que la disposición de las ramas de los árboles, relacionada con la serie de números descrita en el siglo XIII por el matemático italiano Leonardo de Pisa (también conocido como Fibonacci) no es causal, y permite maximizar el aprovechamiento de la energía solar. 


Distribución de los paneles
Hay historias relacionadas con la ciencia que parecen extraídas del argumento de una buena novela, y esta es una de ellas. Un joven estudiante estadounidense de séptimo grado llamado Aidan Dwyer estaba dando un paseo por los bosques de las Catskill Mountains, al norte del estado de Nueva York, cuando notó que las ramas desnudas de los árboles no estaban orientadas al azar. Esto es algo que generalmente pasa desapercibido para el 99% de las personas, y seguramente para prácticamente todos los niños. Pero Aidan lo notó, y después de investigar un poco “descubrió” algo de lo que ya se ha hablado en NeoTeo: la pauta de distribución de las hojas en las ramas y de las ramas en el tronco de muchos árboles siguen la denominada Sucesión de Fibonacci, una serie de números descrita en el siglo XIII por el matemático italiano Leonardo de Pisa.
En efecto, desde hace mucho se sabe que la naturaleza utiliza con frecuencia esta serie de números en sus “diseños”, en la que cada término es la suma de los dos anteriores (1, 1, 2, 3, 5, 8, 13, 21, 34... o Fn = Fn-1 + Fn-2). Desde la distribución de las hojas de una lechuga hasta el número de conejos que podemos esperar tener después de una determinada cantidad de generaciones, pasando por número de individuos existente en cada generación de ancestros de un zángano, pueden explicarse a partir de esta serie. Pero esto es algo que la mayoría de los niños de 13 años suelen ignorar.
Aidan Dwyer lo notó, y tuvo la genial idea de relacionar este hecho con la “dependencia” de la energía solar que tienen los árboles. Puso manos a la obra, y construyó dos pequeños captadores solares compuestos por un puñado de células fotovoltaicas para ver si la forma en que las ramas crecían en los árboles tenía realmente alguna influencia en la cantidad de luz que cada hoja recibía. Uno de los modelos agrupaba los pequeños paneles siguiendo una distribución plana, igual a la que normalmente utilizamos para acomodar las células sobre cualquier techo. El segundo reproducía el patrón que el niño había observado en las ramas de los árboles.