English French German Spain Italian Dutch Russian Portuguese Japanese Korean Arabic Chinese Simplified
  • Sidamat

    Software interactivo para el aprendizaje de las matemáticas

  • Edublog

    Acá encontrarás noticias e información relacionada con las matemáticas y el mundo real.

  • MathClubVirtual

    Red de docentes y estudiantes apasionados por las matemáticas

  • Docente de secundaria

    En Institución Educativa Exalumnas de la Presentación Ibagué Col

  • Matemàticas y Tic

    Uso de Excel para el aprendizaje de la estadística

Crean un 'software' que analiza y simula el comportamiento de las corrientes de agua

El grupo de investigación 'Modelado Matemático y Simulación de Sistemas Medioambientales' del Departamento de Ecuaciones Diferenciales y Análisis Numérico de la Universidad de Sevilla (US) han desarrollado un 'software' de simulación matemática que predice el comportamiento de los flujos ambientales, especialmente de corrientes de agua, caudal de los ríos, inundaciones, deslizamientos de tierra o el transporte y dispersión de contaminantes en la atmósfera en el entorno andaluz. 


El estudio se desarrolla a través de la aplicación 'FreeFem++3D', ecuación tridimensional que "modela" diversos problemas existentes en áreas como la física, la ingeniería, las ciencias de la salud o la economía. "Es un sistema que permite programar, mediante operaciones matemáticas, cualquier tipo de simulación, como las presentes en interacciones de los flujos de aire y sangre o la interacción aire-atmósfera", matiza el experto. 



En concreto, el proyecto 'Freefem++3D: Aplicaciones a la simulación de flujos ambientales' ya se ha aplicado en el estudio del Embalse del Gergal y en el Estrecho de Gibraltar. En el primero, el calor del verano y el frío del invierno provocan un fenómeno ambiental llamado ciclo estacional de estratificación-desestratificación, que permite a los expertos realizar diversos análisis ecológicos para de optimizar los recursos naturales que ofrece la balsa sevillana, según señala. "En ocasiones, pueden darse inversiones de agua entre el fondo y la superficie, es decir, intercambios en el embalse producidos por el viento, que hacen que las sustancias potencialmente contaminantes del fondo ocupen la superficie y puedan ser explotados", apunta el investigador principal, Tomás Chacón Rebollo. En el caso del Estrecho de Gibraltar, este modelo informático ayuda a entender la compleja dinámica que existe entre el Océano Atlántico y el Mar Mediterráneo. 

"Nuestro simulador ayuda a comprender la ecología de la zona, así como el clima. En este sentido, el flujo del Estrecho está generado por dos mareas de diferente densidad que provocan una compleja interacción entre ambas", sostiene Chacón. De esta forma, Esta herramienta ayuda a entender el clima o la flora y fauna de la zona al reproducir el movimiento del agua, además de su velocidad, presión y salinidad. Así, explica que se analizará cómo el Océano Atlántico, de menor densidad, "rellena el Mar Mediterráneo en la superficie; mientras que éste rellena el anterior en el fondo". "La entrada de agua mediterránea en el Atlántico se puede visualizar como una gran cascada", añade. 

Este modelo, caracterizado por ser "preciso y riguroso en sus cálculos", se utiliza para analizar las diversas corrientes de aguas naturales o inducidas por el hombre y es capaz de simular, por ejemplo, el caudal de los ríos, inundaciones, deslizamientos de tierra o el transporte y la dispersión de contaminantes en la atmósfera. Esta aplicación, que se podrá descargar de forma gratuita desde la red, permite determinar, de una manera predictiva, cuál puede ser el alcance de una inundación provocada, por ejemplo, por un río. 

"Con esta aplicación impedimos que se levanten zonas residenciales en entornos peligrosos para la sociedad. Es decir, diagnosticamos, desde un punto de vista del riesgo, la distancia óptima a la que construir las infraestructuras, siempre en función de la reproducción matemática de un desbordamiento virtual", explica el investigador. 

Tomado de www.europapress.es
Comparte este artículo en tus redes sociales:

Hormigas Optimizadoras

Laberinto utilizado con  caminos de  hormigas.

Las colonias de hormigas son capaces de resolver dinámicamente, y de manera óptima, problemas como encontrar el camino más corto entre dos puntos dentro de un laberinto. 


Muchas de las ideas que encontramos en ciencias de la computación han sido inspiradas por la Naturaleza. Así por ejemplo existen los algoritmos genéticos, que se basan en cierta idea de darwinismo para encontrar soluciones a ciertos problemas, sobre todo cuando queremos encontrar el mínimo de energía absoluto en un sistema en el que otros métodos caen en mínimos de energía locales de los que no salen. Existe también el método del enjambre (inspirado en la inteligencia colectiva de un enjambre de abejas) e incluso se pueden encontrar soluciones satisfactorias (aunque no necesariamente la mejor solución posible) al problema del viajante si nos inspiramos en las hormigas. De hecho hay un algoritmo denominado Ant Colony Optimisation (ACO) que se basa en el comportamiento de estos pequeños animales.

La pregunta es si se puede usar directamente a los animales sociales para resolver este tipo de problemas sin pasar por un ordenador y ver así las diferencias. Según han demostrado unos investigadores de la Universidad de Sydney eso mismo no sólo es posible, sino que han podido comprobar que las hormigas logran resolver un equivalente al problema de la torre de Hanoi sin demasiadas dificultades incluso cuando cambian las condiciones a mitad de juego.

La torre de Hanoi, en su versión más simple, consiste en tres barras verticales y tres discos agujereados por el centro de distintos tamaños. Se comienza con los tres discos apilados de mayor a menor (de abajo a arriba) en una de las barras y hay que moverlos a otra barra bajo ciertas restricciones en el menor número de movimientos posibles. Las reglas son que hay que mover los discos de uno en uno y que en ningún momento un disco esté sobre otro de menor tamaño.

Obviamente las hormigas no pueden mover discos de una barra a otra, así que los investigadores implicados crearon un laberinto (ver foto) de tal modo que encontrar el camino más corto entre dos puntos era equivalente a mover los discos en el menor número de movimientos posibles en el problema de la torre de Hanoi.

Este tipo de problemas de tratar de encontrar caminos más cortos en un grafo son típicos problemas de la matemática computacional. Para algunos de esos problemas tenemos algoritmos (Kruskal, Prim, Fleury, Dijkstra…) que nos dan la solución óptima en tiempo polinómico. Para otros problemas, como el problema del viajante o el de la mochila, al tratarse de problemas NP, no tenemos algoritmos que nos den eso mismo, sino algoritmos que nos dan una buena (o mala) aproximación en un tiempo polinómico. En estos últimos casos, si queremos tener seguro la solución óptima, no nos queda más remedio que enumerar por fuerza bruta todos los casos posibles y escoger el mejor, algo que tiene un coste computacional exponencial.

Encontrar el camino más eficiente a través de una red saturada es un desafío común en conductores, ingenieros y compañías telefónicas. Todos estos problemas se encuadran en lo que podemos denominar problemas de optimización y no hace falta decir que estos problemas tienen grandes implicaciones económicas. La optimización permite a una empresa de transportes ahorrar mucho dinero en combustible y una factoría puede producir más si los procesos de montaje están optimizados. Hay muchos problemas logísticos en el que se tiene que maximizar la eficiencia.

Por tanto, si encontramos pistas sobre cómo solucionar un problema de este tipo en la Naturaleza, aunque ya esté solucionado algorítmicamente, quizás lo podamos aplicar a otros casos que son especialmente duros computacionalmente.

Se sabe muy bien cómo solucionar el problema de la torre de Hanoi. Saber cómo se hace algorítmicamente forma parte del programa de estudios de las escuelas de ingeniería informática. Pero las hormigas quizás nos inspiren nuevos métodos algorítmicos para resolver otros problemas.

Quizás pensando en esto último, o simplemente en la diversión, Chris Reid, Madeleine Beekman y David Sumpter (éste de la Universidad de Upsala) pusieron a una colonia de hormigas argentinas (Linepithema humile) a resolver un problema de optimización dinámica de encontrar la ruta mejor en un laberinto.

Las hormigas son capaces de solucionar el problema aunque son sean seres muy simples. La “inteligencia colectiva” que emerge de ellas es suficiente para resolver el problema, aunque cada una de ellas, individualmente, sea incapaz de hacerlo. Recordemos que las hormigas crean caminos a través de unas señales de feromonas que van dejando en el suelo, reforzándose o debilitándose según el tráfico que haya, entre otros factores.

Aunque los algoritmos inspirados en la Naturaleza de los que hemos hablado antes funcionan satisfactoriamente, no necesariamente representan el mundo real de, por ejemplo, las hormigas. En general estos algoritmos son estáticos y están diseñados para resolver un tipo de problema en concreto. Los autores del estudio se plantearon cómo las hormigas reales podrían resolver un problema de optimización y cómo responderían a los cambios. Se preguntaban si sólo podían proporcionar una solución única fija o si se adaptarían a los cambios introducidos a mitad del juego.

En el laberinto equivalente al problema de la torre de Hanoi, las hormigas tenían que encontrar en camino más corto, de los 32768 caminos posibles entre un punto de entrada y otro en el que se colocaba una comida tentadora. Básicamente era un problema tipo Dijkstra en el que el peso de las aristas del grafo eran las longitudes de los segmentos del laberinto.

Al cabo de una hora las hormigas encontraron los dos caminos más cortos que representaban las dos posibles soluciones óptimas al problema. Estas soluciones eran las que más tráfico de hormigas contenían. Entonces los investigadores bloquearon algunos caminos y abrieron nuevas áreas del laberinto a las hormigas para ver si tenían la capacidad de resolver dinámicamente el problema.

Como hemos dicho, al cabo de una hora las hormigas encontraban el camino más corto, que en un caso bordeaba el borde del laberinto. Al bloquearlo las hormigas respondieron mediante una modificación del camino original, solución que no era óptima. Sin embargo, al cabo de otra hora ya habían encontrado la ruta óptima a través del centro del laberinto.

Los investigadores descubrieron que si se permitía a las hormigas exploradoras recorrer el laberinto sin comida durante una hora antes del experimento entonces el resto cometía menos errores y eran más rápidas que cuando se enfrentaban al problema por primera vez sin exploración previa. Esto, según sugieren los investigadores, sería debido a que la feromona dejada por las exploradoras era clave para ayudar a la resolución del problema cuando cambiaban las condiciones.

Contrariamente a lo que se creía, el uso de las feromonas no afianza o consolida a las hormigas en un camino en particular sin poder adaptase a las nuevas circunstancia. Según los investigadores tener al menos dos feromonas separadas les da a las hormigas mayor flexibilidad y les ayuda a encontrar buenas soluciones incluso si las condiciones ambientales cambian.

Añaden que descubrir cómo las hormigas son capaces de resolver dinámicamente problemas puede proporcionar inspiración para nuevos algoritmos de optimización, y que éstos pueden permitir la creación de software que resuelva mejor problemas de optimización en la industria.



Comparte este artículo en tus redes sociales:

Videoteca

Videos Discovery

Videos Discovery
Discovery en la Escuela

Aula virtual Cálculo Integral

Aula virtual Cálculo Integral
Sesiones en Wiziq

Aula Virtual Estadística

Aula Virtual Estadística
Sesiones en Wiziq

Zona Wolfram Alpha

Zona Wolfram Alpha
ir a Herramientas
Este sitio inició el día 1 de abril de 2010. Estas son las estadísticas

   Publicaciones
   Comentarios
 Días online

Vistas de página en total