English French German Spain Italian Dutch Russian Portuguese Japanese Korean Arabic Chinese Simplified
  • Sidamat

    Software interactivo para el aprendizaje de las matemáticas

  • Edublog

    Acá encontrarás noticias e información relacionada con las matemáticas y el mundo real.

  • MathClubVirtual

    Red de docentes y estudiantes apasionados por las matemáticas

  • Docente de secundaria

    En Institución Educativa Exalumnas de la Presentación Ibagué Col

  • Matemàticas y Tic

    Uso de Excel para el aprendizaje de la estadística

La fórmula de Google es uno de los secretos mejor guardados en Internet

Móviles, ordenadores, redes sociales... nos movemos constantemente entre operaciones matemáticas. Una ciencia que encierra todavía algunos curiosos secretos como el algoritmo que calcula las búsquedas de Google.  


Inspiración, creación e intuición. Son algunos de los ingredientes de las matemáticas, esa ciencia que nos acompaña en nuestro día a día, ya sea en el uso del móvil o cuando nos conectamos a Internet para chatear con los amigos. Una ciencia que sigue planteando retos a los investigadores, como los "Problemas del milenio", cuya resolución sería premiada, según anunció el Clay Mathematics Institute en el año 2000, con la suma de un millón de dólares cada uno (y a día de hoy, únicamente uno de estos problemas ha sido resuelto). Las matemáticas, una ciencia de la que dependemos sin duda para el desarrollo y evolución de las nuevas tecnologías.

 

A continuación, la entrevista a Carlos José Navas. Profesor de Finanzas de la UMH y miembro de la Real Sociedad Matemática Española por parte de un periódico de La Provincia de Alicante (España).

¿Tiene Google una fórmula secreta como la Coca-Cola?
Todos los que usamos Google (que somos la práctica totalidad de los internautas) sabemos lo importante que es aparecer entre las primeras posiciones al realizar la búsqueda. La forma en la que Google determina qué enlace debe aparecer antes de otro es mediante una familia de algoritmos llamada PageRank, que fue la gran aportación de la Tesis Doctoral de los fundadores de Google, Larry Page y Sergey Brin, en la Universidad de Stanford. Simplificado, PageRank funciona como un índice de popularidad basado en enlaces: cuantos más enlaces tiene una página desde otras, mayor es su "PageRank". El argoritmo original es conocido (puede verse por ejemplo en http://es.wikipedia.org/wiki/PageRank), pero el que funciona en la actualidad sí, es un secreto como el de la Coca-Cola y uno de los mejor guardados en Internet. Google lo modifica cada cierto tiempo para hacer frente a los intentos de manipular los resultados (la última actualización fue en enero de este año: 2011).

¿Y hasta qué punto dependemos de las matemáticas con las nuevas tecnologías?
Toda la ciencia informática está basada en matemáticas. Lo que nosotros percibimos como una web, un email, un Tweet, una foto en Facebook... detrás son variables, valores, funciones, operaciones lógicas...y en última instancia, al final no son más que 0s y 1s interpretados por los ordenadores.

¿Ocurre de igual modo cuando utilizamos el teléfono móvil?
Sí y son fundamentales. Por poner un simple ejemplo: al realizar una llamada, el teléfono lo que hace es enviar una señal electrónica que transmite una versión digitalizada de lo que estamos diciendo. Para esta trasmisión es fundamental dos cosas: comprimir los datos, para que lleguen de forma casi inmediata al receptor, y corregir los posibles errores, para que lo que llegue sea realmente lo que decimos. Pues bien, ambas labores se basan en algoritmos matemáticos.

¿Es tan difícil de adquirir, aprender o dominar un lenguaje de programación para el ordenador? ¿Hay uno o muchos como ocurre con los idiomas?
Hay muchos, y con la explosión de la web por un lado y de los dispositivos móviles por otro muchos desarrolladores están aprendiendo nuevos lenguajes para adentrarse en esos mercados. Yo confieso que es uno de mis retos pendientes.

¿Qué problemas obsesionan en estos momentos al mundo matemático? ¿Son los seis "Problemas del milenio" como señalan algunos expertos?
Los seis siguen estando ahí, desde luego, pero no creo que sean una obsesión más que para aquellas personas que hayan decidido dedicarse a tratar de encontrarles solución. Es en la matemática aplicada, por ejemplo, en cómo afrontar un problema que jamás se había dado hasta hace 30 años que es el disponer de una cantidad masiva de datos e información y cómo tratarla, donde yo veo más campo para el estudio y que surjan cosas nuevas.

¿Están los jóvenes cada vez más distantes de las matemáticas? ¿Hay curiosidad por los retos difíciles?
Siempre que surge la pregunta sobre los jóvenes, yo recuerdo que alguien me dijo que un viejo profesor que se quejaba de que las nuevas generaciones estaban echadas a perder... y que ese viejo profesor era Aristóteles... no sé si será cierta, pero, se "non è vero, è ben trovato". La revolución de Internet está encabezada por programadores con un dominio excelente de las matemáticas.

¿Depende de las matemáticas el futuro de Internet?
Sí, sin duda. Las soluciones a los problemas de almacenamiento de datos, de velocidades de conexión, de ampliar las posibilidades de la red... todos, en su esencia, son problemas matemáticos. También ocurre con los videojuegos y la fotografía que, como la astronomía, tiene una base puramente matemática, tanto la óptica como la digital.

Comparte este artículo en tus redes sociales:

Niño de trece años puede revolucionar la energía solar

El adolescente ha aplicado un famoso modelo matemático del siglo XIII y se ha inspirado en la disposición de las hojas de los árboles para cambiar la orientación de las células fotovoltaicas 
El niño Aidan Dwyer ha conseguido aumentar hasta en un 50% el redimiento de las células fotovoltaicas  
Algunos descubrimientos trascendentales para la ciencia tienen lugar de forma casual. Quizás la historia de Newton, la manzana que cae y el descubrimiento de la forma en que funciona la gravedad sea apócrifa, pero el descubrimiento de Aidan Dwyer es absolutamente real. 

Este estudiante de solo 13 años de edad, paseando por un bosque, descubrió que si se orientan las celdas fotovoltaicas respecto del Sol de una determinada manera, su rendimiento puede mejorar entre un 20% y 50%. Parece que la disposición de las ramas de los árboles, relacionada con la serie de números descrita en el siglo XIII por el matemático italiano Leonardo de Pisa (también conocido como Fibonacci) no es causal, y permite maximizar el aprovechamiento de la energía solar. 


Distribución de los paneles
Hay historias relacionadas con la ciencia que parecen extraídas del argumento de una buena novela, y esta es una de ellas. Un joven estudiante estadounidense de séptimo grado llamado Aidan Dwyer estaba dando un paseo por los bosques de las Catskill Mountains, al norte del estado de Nueva York, cuando notó que las ramas desnudas de los árboles no estaban orientadas al azar. Esto es algo que generalmente pasa desapercibido para el 99% de las personas, y seguramente para prácticamente todos los niños. Pero Aidan lo notó, y después de investigar un poco “descubrió” algo de lo que ya se ha hablado en NeoTeo: la pauta de distribución de las hojas en las ramas y de las ramas en el tronco de muchos árboles siguen la denominada Sucesión de Fibonacci, una serie de números descrita en el siglo XIII por el matemático italiano Leonardo de Pisa.
En efecto, desde hace mucho se sabe que la naturaleza utiliza con frecuencia esta serie de números en sus “diseños”, en la que cada término es la suma de los dos anteriores (1, 1, 2, 3, 5, 8, 13, 21, 34... o Fn = Fn-1 + Fn-2). Desde la distribución de las hojas de una lechuga hasta el número de conejos que podemos esperar tener después de una determinada cantidad de generaciones, pasando por número de individuos existente en cada generación de ancestros de un zángano, pueden explicarse a partir de esta serie. Pero esto es algo que la mayoría de los niños de 13 años suelen ignorar.
Aidan Dwyer lo notó, y tuvo la genial idea de relacionar este hecho con la “dependencia” de la energía solar que tienen los árboles. Puso manos a la obra, y construyó dos pequeños captadores solares compuestos por un puñado de células fotovoltaicas para ver si la forma en que las ramas crecían en los árboles tenía realmente alguna influencia en la cantidad de luz que cada hoja recibía. Uno de los modelos agrupaba los pequeños paneles siguiendo una distribución plana, igual a la que normalmente utilizamos para acomodar las células sobre cualquier techo. El segundo reproducía el patrón que el niño había observado en las ramas de los árboles.
Comparte este artículo en tus redes sociales:

Crean un 'software' que analiza y simula el comportamiento de las corrientes de agua

El grupo de investigación 'Modelado Matemático y Simulación de Sistemas Medioambientales' del Departamento de Ecuaciones Diferenciales y Análisis Numérico de la Universidad de Sevilla (US) han desarrollado un 'software' de simulación matemática que predice el comportamiento de los flujos ambientales, especialmente de corrientes de agua, caudal de los ríos, inundaciones, deslizamientos de tierra o el transporte y dispersión de contaminantes en la atmósfera en el entorno andaluz. 


El estudio se desarrolla a través de la aplicación 'FreeFem++3D', ecuación tridimensional que "modela" diversos problemas existentes en áreas como la física, la ingeniería, las ciencias de la salud o la economía. "Es un sistema que permite programar, mediante operaciones matemáticas, cualquier tipo de simulación, como las presentes en interacciones de los flujos de aire y sangre o la interacción aire-atmósfera", matiza el experto. 



En concreto, el proyecto 'Freefem++3D: Aplicaciones a la simulación de flujos ambientales' ya se ha aplicado en el estudio del Embalse del Gergal y en el Estrecho de Gibraltar. En el primero, el calor del verano y el frío del invierno provocan un fenómeno ambiental llamado ciclo estacional de estratificación-desestratificación, que permite a los expertos realizar diversos análisis ecológicos para de optimizar los recursos naturales que ofrece la balsa sevillana, según señala. "En ocasiones, pueden darse inversiones de agua entre el fondo y la superficie, es decir, intercambios en el embalse producidos por el viento, que hacen que las sustancias potencialmente contaminantes del fondo ocupen la superficie y puedan ser explotados", apunta el investigador principal, Tomás Chacón Rebollo. En el caso del Estrecho de Gibraltar, este modelo informático ayuda a entender la compleja dinámica que existe entre el Océano Atlántico y el Mar Mediterráneo. 

"Nuestro simulador ayuda a comprender la ecología de la zona, así como el clima. En este sentido, el flujo del Estrecho está generado por dos mareas de diferente densidad que provocan una compleja interacción entre ambas", sostiene Chacón. De esta forma, Esta herramienta ayuda a entender el clima o la flora y fauna de la zona al reproducir el movimiento del agua, además de su velocidad, presión y salinidad. Así, explica que se analizará cómo el Océano Atlántico, de menor densidad, "rellena el Mar Mediterráneo en la superficie; mientras que éste rellena el anterior en el fondo". "La entrada de agua mediterránea en el Atlántico se puede visualizar como una gran cascada", añade. 

Este modelo, caracterizado por ser "preciso y riguroso en sus cálculos", se utiliza para analizar las diversas corrientes de aguas naturales o inducidas por el hombre y es capaz de simular, por ejemplo, el caudal de los ríos, inundaciones, deslizamientos de tierra o el transporte y la dispersión de contaminantes en la atmósfera. Esta aplicación, que se podrá descargar de forma gratuita desde la red, permite determinar, de una manera predictiva, cuál puede ser el alcance de una inundación provocada, por ejemplo, por un río. 

"Con esta aplicación impedimos que se levanten zonas residenciales en entornos peligrosos para la sociedad. Es decir, diagnosticamos, desde un punto de vista del riesgo, la distancia óptima a la que construir las infraestructuras, siempre en función de la reproducción matemática de un desbordamiento virtual", explica el investigador. 

Tomado de www.europapress.es
Comparte este artículo en tus redes sociales:

Hormigas Optimizadoras

Laberinto utilizado con  caminos de  hormigas.

Las colonias de hormigas son capaces de resolver dinámicamente, y de manera óptima, problemas como encontrar el camino más corto entre dos puntos dentro de un laberinto. 


Muchas de las ideas que encontramos en ciencias de la computación han sido inspiradas por la Naturaleza. Así por ejemplo existen los algoritmos genéticos, que se basan en cierta idea de darwinismo para encontrar soluciones a ciertos problemas, sobre todo cuando queremos encontrar el mínimo de energía absoluto en un sistema en el que otros métodos caen en mínimos de energía locales de los que no salen. Existe también el método del enjambre (inspirado en la inteligencia colectiva de un enjambre de abejas) e incluso se pueden encontrar soluciones satisfactorias (aunque no necesariamente la mejor solución posible) al problema del viajante si nos inspiramos en las hormigas. De hecho hay un algoritmo denominado Ant Colony Optimisation (ACO) que se basa en el comportamiento de estos pequeños animales.

La pregunta es si se puede usar directamente a los animales sociales para resolver este tipo de problemas sin pasar por un ordenador y ver así las diferencias. Según han demostrado unos investigadores de la Universidad de Sydney eso mismo no sólo es posible, sino que han podido comprobar que las hormigas logran resolver un equivalente al problema de la torre de Hanoi sin demasiadas dificultades incluso cuando cambian las condiciones a mitad de juego.

La torre de Hanoi, en su versión más simple, consiste en tres barras verticales y tres discos agujereados por el centro de distintos tamaños. Se comienza con los tres discos apilados de mayor a menor (de abajo a arriba) en una de las barras y hay que moverlos a otra barra bajo ciertas restricciones en el menor número de movimientos posibles. Las reglas son que hay que mover los discos de uno en uno y que en ningún momento un disco esté sobre otro de menor tamaño.

Obviamente las hormigas no pueden mover discos de una barra a otra, así que los investigadores implicados crearon un laberinto (ver foto) de tal modo que encontrar el camino más corto entre dos puntos era equivalente a mover los discos en el menor número de movimientos posibles en el problema de la torre de Hanoi.

Este tipo de problemas de tratar de encontrar caminos más cortos en un grafo son típicos problemas de la matemática computacional. Para algunos de esos problemas tenemos algoritmos (Kruskal, Prim, Fleury, Dijkstra…) que nos dan la solución óptima en tiempo polinómico. Para otros problemas, como el problema del viajante o el de la mochila, al tratarse de problemas NP, no tenemos algoritmos que nos den eso mismo, sino algoritmos que nos dan una buena (o mala) aproximación en un tiempo polinómico. En estos últimos casos, si queremos tener seguro la solución óptima, no nos queda más remedio que enumerar por fuerza bruta todos los casos posibles y escoger el mejor, algo que tiene un coste computacional exponencial.

Encontrar el camino más eficiente a través de una red saturada es un desafío común en conductores, ingenieros y compañías telefónicas. Todos estos problemas se encuadran en lo que podemos denominar problemas de optimización y no hace falta decir que estos problemas tienen grandes implicaciones económicas. La optimización permite a una empresa de transportes ahorrar mucho dinero en combustible y una factoría puede producir más si los procesos de montaje están optimizados. Hay muchos problemas logísticos en el que se tiene que maximizar la eficiencia.

Por tanto, si encontramos pistas sobre cómo solucionar un problema de este tipo en la Naturaleza, aunque ya esté solucionado algorítmicamente, quizás lo podamos aplicar a otros casos que son especialmente duros computacionalmente.

Se sabe muy bien cómo solucionar el problema de la torre de Hanoi. Saber cómo se hace algorítmicamente forma parte del programa de estudios de las escuelas de ingeniería informática. Pero las hormigas quizás nos inspiren nuevos métodos algorítmicos para resolver otros problemas.

Quizás pensando en esto último, o simplemente en la diversión, Chris Reid, Madeleine Beekman y David Sumpter (éste de la Universidad de Upsala) pusieron a una colonia de hormigas argentinas (Linepithema humile) a resolver un problema de optimización dinámica de encontrar la ruta mejor en un laberinto.

Las hormigas son capaces de solucionar el problema aunque son sean seres muy simples. La “inteligencia colectiva” que emerge de ellas es suficiente para resolver el problema, aunque cada una de ellas, individualmente, sea incapaz de hacerlo. Recordemos que las hormigas crean caminos a través de unas señales de feromonas que van dejando en el suelo, reforzándose o debilitándose según el tráfico que haya, entre otros factores.

Aunque los algoritmos inspirados en la Naturaleza de los que hemos hablado antes funcionan satisfactoriamente, no necesariamente representan el mundo real de, por ejemplo, las hormigas. En general estos algoritmos son estáticos y están diseñados para resolver un tipo de problema en concreto. Los autores del estudio se plantearon cómo las hormigas reales podrían resolver un problema de optimización y cómo responderían a los cambios. Se preguntaban si sólo podían proporcionar una solución única fija o si se adaptarían a los cambios introducidos a mitad del juego.

En el laberinto equivalente al problema de la torre de Hanoi, las hormigas tenían que encontrar en camino más corto, de los 32768 caminos posibles entre un punto de entrada y otro en el que se colocaba una comida tentadora. Básicamente era un problema tipo Dijkstra en el que el peso de las aristas del grafo eran las longitudes de los segmentos del laberinto.

Al cabo de una hora las hormigas encontraron los dos caminos más cortos que representaban las dos posibles soluciones óptimas al problema. Estas soluciones eran las que más tráfico de hormigas contenían. Entonces los investigadores bloquearon algunos caminos y abrieron nuevas áreas del laberinto a las hormigas para ver si tenían la capacidad de resolver dinámicamente el problema.

Como hemos dicho, al cabo de una hora las hormigas encontraban el camino más corto, que en un caso bordeaba el borde del laberinto. Al bloquearlo las hormigas respondieron mediante una modificación del camino original, solución que no era óptima. Sin embargo, al cabo de otra hora ya habían encontrado la ruta óptima a través del centro del laberinto.

Los investigadores descubrieron que si se permitía a las hormigas exploradoras recorrer el laberinto sin comida durante una hora antes del experimento entonces el resto cometía menos errores y eran más rápidas que cuando se enfrentaban al problema por primera vez sin exploración previa. Esto, según sugieren los investigadores, sería debido a que la feromona dejada por las exploradoras era clave para ayudar a la resolución del problema cuando cambiaban las condiciones.

Contrariamente a lo que se creía, el uso de las feromonas no afianza o consolida a las hormigas en un camino en particular sin poder adaptase a las nuevas circunstancia. Según los investigadores tener al menos dos feromonas separadas les da a las hormigas mayor flexibilidad y les ayuda a encontrar buenas soluciones incluso si las condiciones ambientales cambian.

Añaden que descubrir cómo las hormigas son capaces de resolver dinámicamente problemas puede proporcionar inspiración para nuevos algoritmos de optimización, y que éstos pueden permitir la creación de software que resuelva mejor problemas de optimización en la industria.



Comparte este artículo en tus redes sociales:

Reto matemático Semestre A 2011

Este semestre el reto matemático para mis estudiantes en la última semana del tercer corte consiste en: 
He hecho con las letras del abecedario tres conjuntos:
1º : {C, E, F, G, H, I, J, K, L, M, N, Ñ, S, T, U, W, X, Y, Z}           
2º : {A, D, O, P, Q, R}
3º : {B}



¿por qué los he ordenado asi? Es decir, encontrar la característica común de los elementos de cada uno de los conjuntos

Anímense a participar, reconocimiento especial para  quien comente de primero y de la manera más sencilla la respuesta a este problema abierto

Pueden consultar el reto del semestre pasado acá
Comparte este artículo en tus redes sociales:

Criptografía

La criptografía, la ciencia que estudia cómo hacer un mensaje que resulte indescifrable para terceros, parece cosa de novelas de espionaje o tesoros enterrados. Sin embargo, todos nosotros recurrimos a la criptografía cuando hacemos una compra por Internet o enviamos un mensaje por telefonía celular. Y es, probablemente, la rama de las matemáticas que más provecho ha dado en los últimos años.




Una clave muy sencilla consiste en reemplazar cada letra del mensaje por otro símbolo: a igual letra, igual símbolo. Es el método que, en la imaginación de Edgar Allan Poe, usa el pirata Kidd en “El escarabajo de oro”. El protagonista, un hombre llamado Legrand, encuentra en la playa un pergamino con lo que parece ser una secuencia aleatoria de números y símbolos. Legrand sospecha que el pergamino puede contener las instrucciones para encontrar un tesoro y logra descifrar el mensaje.
Poe era muy aficionado a este tipo de claves y solía publicar desafíos de este tipo para los lectores del Alexander’s Weekly Messenger, una revista de Filadelfia. El relato en “El escarabajo de oro” es casi un manual de instrucciones para resolver claves de sustitución. Legrand comienza por contar cuántas veces aparece cada símbolo y asociar el símbolo que más se repite (el número ocho) a la letra más frecuente en el idioma inglés (la e). Confirma esta suposición por el hecho de que el par 88 aparece cinco veces el mensaje y, efectivamente, la letra “e” se duplica muchas veces en inglés (como en feed, speed, agree, etc.). Luego analiza la distribución de los símbolos, localiza la palabra the (la más frecuente en inglés) y, paso a paso, termina por descifrar todo el mensaje.

Sherlock Holmes emplea el mismo método para resolver una clave similar en “La aventura de los bailarines”. Aquí cada letra se reemplaza por la figura de un hombrecito bailando y a cada letra le corresponde una posición diferente. Como Legrand, Holmes asocia la letra “e” a la figura más repetida. Curiosamente, para Poe, el orden de las letras en inglés, según su frecuencia, es E, A, O, I, D, H, N, R, S, T... mientras que para Holmes es E, T, A, O, I, N, S, H, R, D y L.
Mucho más sencilla es la clave que el profesor Lidenbrock (en realidad, su sobrino) descifra en Viaje al centro de la Tierra: el autor del mensaje simplemente lo escribe al revés.

CLAVES DE DESPLAZAMIENTO

Otro tipo de clave consiste en reemplazar cada letra del mensaje por la que le sigue en el abecedario, una cantidad determinada de posiciones. Por ejemplo, reemplazando cada letra por la que está dos posiciones más allá. Entonces, la palabra PAGINA se convertiría en RCIKOC (la R está dos lugares después de la P; la C, dos lugares después de la A y así sucesivamente). Este sistema de encriptación se llama también “clave cesárea”, porque fue usada por Julio César.
Estas claves “de desplazamiento” son muy fáciles de descifrar: una vez identificada una letra, quedan determinadas todas las demás. Además, para un alfabeto de veintisiete letras hay sólo veintiséis desplazamientos posibles y una computadora podría analizarlas a todas en segundos.

El método de desplazamiento se puede perfeccionar recurriendo a un número. Por ejemplo, 4239. Este número indica que la primera letra del mensaje se reemplaza por la que está cuatro lugares más allá en el abecedario. La segunda, por la que está dos lugares más allá. La tercera, por la que está tres lugares más allá y la cuarta, por la que está nueve lugares más allá. El ciclo se repite a partir de la quinta letra. Este sistema es más seguro porque una misma letra se reemplaza por una distinta según su posición en el texto y no sirve el análisis de frecuencia empleado por el personaje de Poe o por Sherlock Holmes. Lewis Carroll, el autor de Alicia en el País de las Maravillas, publicó una vez una tabla de doble entrada para aplicar rápidamente la clave de desplazamiento.

Durante la Segunda Guerra Mundial, el ejército alemán desarrolló una máquina encriptadora llamada Enigma, de gran complejidad y que producía mensajes secretos casi imposibles de descifrar. Para mayor seguridad, las claves se cambiaban varias veces al día. Un tipo de mensajes que preocupaba especialmente a los aliados eran los que informaban la posición de los submarinos alemanes que hundían los barcos que llevaban suministros a través del Atlántico. Fue gracias a los trabajos de Alan Turing que los ingleses lograron descubrir cómo funcionaba la máquina Enigma y descifrar los mensajes enemigos. Los alemanes estaban tan seguros de la inviolabilidad de sus mensajes que atribuyeron esto a la labor de espías.
El ejército de Estados Unidos, mientras tanto, desarrolló un lenguaje secreto basado en el idioma de los indios navajos. El idioma navajo no tenía forma escrita, por lo que había pocos registros de su estructura, fuera de Estados Unidos. El código usaba algunas palabras traducidas directamente del navajo, otras veces empleaba metáforas (por ejemplo, nombres de pájaros para aviones o de peces para barcos) y también incluía palabras armadas mediante fonética. Por ejemplo, el verbo belong (pertenecer) se armaba con las palabras navajas para bee (abeja) y long (largo).
Esta clave no empleaba sustitución de letras, no se basaba en un algoritmo matemático, ni necesitaba máquinas complejas para encriptar y descifrar. Cada regimiento, cada batallón, incluía un indio navajo responsable de las comunicaciones que traducía casi instantáneamente los mensajes transmitidos.

El código fue vital para el avance de las tropas norteamericanas en el Pacífico. La historia del código navajo fue llevada al cine en 2002 en la película Código de guerra (Windtalkers), con Nicolas Cage en el papel del oficial que debía acompañar al indio. Su misión era protegerlo pero, también, matarlo ante el riesgo de caer prisionero: el código era más valioso que la vida de un soldado. También se menciona el código navajo en “Anasazi”, uno de los episodios de los Expedientes X.

EL METODO RSA

Normalmente, la clave usada para encriptar un mensaje es la misma que se usa para desencriptarlo. Por lo tanto, los participantes de la comunicación deben acordarla previamente. En las novelas de espionaje vemos cómo se intercambian libros de claves en encuentros personales o se anuncian solapadamente en la radio o en avisos clasificados. En cualquier caso, que la clave tenga que “circular” en algún momento pone en riesgo la seguridad de la comunicación.
Pero, en 1975, los matemáticos Ronald Rivest, Adi Shamir y Leonard Adleman crearon un sistema de encriptación completamente nuevo que asegura la confidencialidad gracias al uso de claves distintas para encriptar y desencriptar. El sistema se conoce como RSA por las iniciales de sus creadores.

Por ejemplo, supongamos que un banco necesita que sus clientes se comuniquen con una sucursal. Por supuesto, los clientes quieren que sus mensajes sean confidenciales, que nadie que no sea el banco pueda leerlos. Para eso, el banco dispone de dos claves. Una es pública, la conoce todo el mundo. El banco la puede anunciar en su publicidad, en su página web o comunicarla a sus clientes en el momento de abrir la cuenta. Esta clave la usan los clientes para encriptar sus mensajes. La otra es privada, sólo la conoce el banco y la usa para desencriptar los mensajes. Como las claves son distintas, eso asegura la confidencialidad. Aunque un mensaje sea interceptado por un tercero, que conoce la clave usada para encriptar (porque es pública), éste no podrá desencriptarlo porque no tiene la clave privada, que sólo la conoce el banco. A diferencia de los sistemas tradicionales, los participantes de la comunicación no necesitan acordar secretamente las claves. El sistema se compara a veces con un buzón en el que cualquiera puede meter un mensaje, pero sólo el que tiene la llave puede abrirlo y leer los mensajes que contiene.
Esta asimetría (claves distintas para encriptar y para desencriptar) es lo que garantiza el secreto. Sin embargo, el sistema es simétrico en otro sentido: un mensaje encriptado con la clave pública debe ser desencriptado con la clave privada. Y, viceversa, un mensaje encriptado con la clave privada debe ser desencriptado con la clave pública. Y esto tiene otra ventaja: si el cliente recibe un mensaje que, para leerlo, debe ser desencriptado con la clave pública, eso indica que fue encriptado con la clave privada. El mensaje no es secreto porque todos conocen la clave pública. Pero como la clave privada sólo la conoce el banco, eso garantiza el origen del mensaje. Si se desea garantizar el origen del mensaje y, además, su privacidad, se puede usar una doble encriptación.

El método RSA comienza transformando el mensaje en un número muy largo. Por ejemplo, se reemplaza la letra A por el número 01, la B por el 02 y así sucesivamente. Luego se hace la encriptación propiamente dicha mediante un par de operaciones matemáticas. Estas operaciones no son complejas en sí mismas pero, como involucran cientos de dígitos, son imposibles de realizar sin computadora.

Aunque la clave pública y la privada son distintas, eso no significa que sean cualesquiera. En realidad, las dos claves están directamente relacionadas y, conociendo la clave pública, es teóricamente posible calcular la privada. Teóricamente. En la práctica llevaría millones de millones de años completar el cálculo. Esto se debe a que ambas claves se relacionan a través de números primos. Las dos se calculan a partir de un número muy grande (de centenares de dígitos) que es el producto de sólo dos números primos.

Si tenemos los números primos 47 y 59 es fácil calcular su producto: 2773. Pero, si nos dan el número 2773 y queremos saber qué dos números lo dan como producto, tenemos que probar con todos los números primos desde el dos hasta la raíz cuadrada de 2773. Son dieciséis divisiones en total. Si el número inicial tiene cuarenta dígitos, obtener los primos que lo forman a razón de un millón de divisiones por segundo podría tardar más de 60 mil años. Con números de cien o más dígitos, el tiempo necesario superaría largamente la edad del Universo.

Durante muchos años, la investigación sobre números primos se consideró la rama más pura de las matemáticas, algo que no tendría ninguna utilidad práctica. Pero todo llega y ahora vemos cómo la confidencialidad de nuestras comunicaciones y hasta la seguridad nacional descansan en los números primos.
Tomado de Diario Página 12 en http://www.pagina12.com.ar/diario/ultimas/index.html

Comparte este artículo en tus redes sociales:

Videoteca

Videos Discovery

Videos Discovery
Discovery en la Escuela

Aula virtual Cálculo Integral

Aula virtual Cálculo Integral
Sesiones en Wiziq

Aula Virtual Estadística

Aula Virtual Estadística
Sesiones en Wiziq

Zona Wolfram Alpha

Zona Wolfram Alpha
ir a Herramientas
Este sitio inició el día 1 de abril de 2010. Estas son las estadísticas

   Publicaciones
   Comentarios
 Días online

Vistas de página en total